

Jordan University of Science and Technology Faculty of Institute Of Nanotechnology Nanotechnology And Engineering Department

NANO701 Semiconductor Devices

First Semester 2021-2022

Course Catalog

3 Credit Hours. This course introduces an introduction to quantum mechanics, principles and physics of semiconductor devices, de Broglie principle, wave functions, Schrodinger equation, semiconductor crystals, atomic bonds, Doping, atomic energy levels, E-K diagrams, P-N junctions, semiconductor conductors, Schottky Diode, and Ohmic Contacts.

Text Book		
Title	Principles of Semiconductor Devices 2nd edition	
Author(s)	Sima Dimitrijev	
Edition	2nd Edition	
Short Name	Textbook	
Other Information		

Instructor		
Name	Dr. YAHIA MAKABLEH	
Office Location	-	
Office Hours	Sun : 11:00 - 13:00 Mon : 09:00 - 11:00 Tue : 10:30 - 12:30 Wed : 08:30 - 10:00	
Email	yfmakableh@just.edu.jo	

Class Schedule & Room Section 1: Lecture Time: Wed : 11:30 - 14:30 Room: U

Tentative List of Topics Covered				
Weeks	Торіс	References		
Week 1	Introduction crystals			
Week 2	Energy bands part I			
Week 3	Energy bands part II			
Week 4	E-K diagrams			
Week 5	Fermi Dirac distribution neutrality equation			
Week 6	Drift Current Part I			
Week 7	Drift Current Part II			
Week 8	Diffusion Current Part I			
Week 9	Diffusion Current Part II			
Week 10	Generation and Recombination Part I			
Week 11	PN junction part I			
Week 12	PN junction part II			
Week 13	PN junction part III			
Week 14	Schottky Diode and Ohmic Contacts			
Week 15	Schottky Diode and Ohmic Contacts Part II			
Week 16	Revision			

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Anility to solve numerical equations related to Schrodinger equation, semiconductor crystals, atomic bonds, Doping, atomic energy levels, E-K diagrams	30%	
Analysis and explain Drift and Diffusion current behavior	25%	
Differentiate between different types of current carrier generation and recombination	15%	
Solve and analyze PN junction problems	30%	

Evaluation		
Assessment Tool	Weight	
Midterm	30%	
Semester work	20%	
Final	50%	

Policy		
Homework Policy:	Homeworks will be distributed on weekly bases.	
Attendance Policy	Attendance is required as announced (on campus or online).	

Date Printed: 2021-12-09