

Jordan University of Science and Technology Faculty of Engineering Nuclear Engineering Department

NE521 Nuclear Reactor Safety

Second Semester 2019-2020

Course Catalog

3 Credit Hours. Deterministic and probabilistic analysis of nuclear reactor safety. Analysis and evaluation applied to reactor design for accident prevention and mitigation; protective systems and their reliability, containment design, emergency cooling requirements, reactivity excursions and the atmospheric dispersion of radioactive material.

Text Book			
Title	Class Notes		
Author(s)	Instructor		
Edition	1st Edition		
Short Name	Ref#1		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#2	Nuclear Safety	Gianni Petrangeli	1st Edition	
Ref#3	Introduction to Nuclear Engineering	John R. Lamarsh, Anthony John Baratta	3rd Edition	

Instructor			
Name	Dr. Salaheddin Malkawi		
Office Location	E2L2		
Office Hours	Sun : 08:30 - 11:00 Mon : 08:00 - 09:00 Tue : 08:30 - 11:00 Thu : 09:00 - 11:00		

Email

salahm@just.edu.jo

Class Schedule & Room

Section 3:

Lecture Time: Sun, Tue, Thu : 11:30 - 12:30 Room: E2117

Prerequisites			
Line Number	Course Name	Prerequisite Type	
2004510	NE451 Nuclear Power Plant Systems & Operations (1)	Prerequisite / Study	

Tentative List of Topics Covered				
Weeks	Торіс	References		
Week 1	Introduction, History and Terminology			
Weeks 2, 3	Dispersion of Radioactive releases			
Weeks 4, 5	Health Consequences of Radioactive releases			
Week 5	Siting of Nuclear Power Plants			
Week 6	Principles of Reactor Safety			
Week 7	Accidents of Nuclear Reactors			
Week 8	Safety Systems in Nuclear Reactors			
Weeks 9, 10	Deterministic Safety Analysis			
Weeks 11, 12, 13, 14	Probabilistic Safety Analysis			
Week 15	Major Accidents in the Nuclear Industry			

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Ability to demonstrate a good understanding of the basic safety terminology and its history, Identify the isotopes that constitute the source term for a nuclear reactor and calculate their concentration upon a postulated release using dispersion equations. [21, 12, 14, 17]	24%	
Ability to calculate radiological doses due to different types of exposure and to use dose limits along with other site physical characteristics in the siting process of a nuclear reactor. [21, 12, 17]	10%	
Ability to demonstrate a good understanding of the principle of defense in depth and to recognize and analyze the different types of nuclear reactor accidents and the different groups of safety systems intended to mitigate their consequences. [32, 17]	22%	

Ability to describe the different elements of a deterministic safety analysis. [17]	12%	
Ability to implement event tree and fault tree analysis along with the probability theory to perform probabilistic safety analysis. [11, 12, 17]	22%	
Ability to explain the different circumstances and conditions during the Chernobyl, Three Miles Island and the Fukushima accidents. [17]	10%	

Relationship to Program Student Outcomes (Out of 100%)						
1	2	3	4	5	6	7
21.93	31.13		4.80			42.13

Evaluation			
Assessment Tool	Weight		
First Exam	25%		
Second exam	25%		
Final exam	40%		
Quizzes, Class Participation and Homework	10%		

Date Printed: 2020-10-10