

# Jordan University of Science and Technology Faculty of Engineering Chemical Engineering Department

CHE203 Fundamentals Of Chemical Engineering - JNQF Level: 7

First Semester 2023-2024

### **Course Catalog**

4 Credit Hours. The role of chemical processing, material balances (non-reactive and reactive processes), physical properties estimation, multi-phase systems, energy balances (non-reactive and reactive processes), balances on transient processes.

|                      | Text Book                                   |
|----------------------|---------------------------------------------|
| Title                | Elementary Principles of Chemical Processes |
| Author(s)            | Felder, R.M., and Rousseau, R.W.            |
| Edition              | 3rd Edition                                 |
| Short Name           | Text Book                                   |
| Other<br>Information |                                             |

## **Course References**

| Short<br>name | Book name                                                        | Author(s)                    | Edition        | Other<br>Information |
|---------------|------------------------------------------------------------------|------------------------------|----------------|----------------------|
| Ref. 1        | Perry's Chemical Engineers' Handbook, 9th Edition<br>9th Edition | Perry, R.H., and Green, D.W. | 9th<br>Edition |                      |

|                 | Instructor              |
|-----------------|-------------------------|
| Name            | Mr. SALAHEDDIN ABUYAHYA |
| Office Location | CH2 L-2                 |
| Office Hours    |                         |
| Email           | seabuyahya@just.edu.jo  |

# Class Schedule & Room

Section 2:

Lecture Time: Sun, Tue, Thu: 13:30 - 14:30

Room: C5025

Section 3:

Lecture Time: Sun, Tue, Thu: 12:30 - 13:30

Room: C5021

| Prerequisites |                                             |                      |  |
|---------------|---------------------------------------------|----------------------|--|
| Line Number   | Course Name                                 | Prerequisite Type    |  |
| 911020        | CHEM102 General Chemistry (2)               | Prerequisite / Study |  |
| 221021        | CHE102 Introduction To Chemical Engineering | Prerequisite / Study |  |

| Tentative List of Topics Covered |                                        |                                          |  |  |
|----------------------------------|----------------------------------------|------------------------------------------|--|--|
| Weeks                            | Topic                                  | References                               |  |  |
| Weeks 1, 2, 3, 4, 5              | Fundamentals of Material Balances      | Chapter 4 From Text Book                 |  |  |
| Week 6                           | Single-Phase Systems                   | Chapter 5 From Text Book,<br>From Ref. 1 |  |  |
| Weeks 7, 8                       | Multiphase Systems                     | Chapter 6 From Text Book,<br>From Ref. 1 |  |  |
| Week 9                           | Energy and Energy Balances             | From <b>Text Book</b>                    |  |  |
| Weeks 10, 11, 12                 | Energy Balances on Nonreactive Systems | Chapter 8 From Text Book                 |  |  |
| Weeks 13, 14, 15                 | Energy Balances on Reactive Systems    | Chapter 9 From Text Book                 |  |  |

| Mapping of Course Outcomes to Program Outcomes and NQF Outcomes                                                                                                                                                                                                                                 | Course<br>Outcome<br>Weight<br>(Out of<br>100%) | Assessment method |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------|
| Explain the meaning of batch; semibatch; continuous; transient; steady state processes; limiting and excess reactants; degrees of freedom; fractional conversion; yield and selectivity; purge and recycle streams; theoretical and excess air; and dry-basis composition. [5SO1, 5SO3] [1L7K1] | 10%                                             |                   |
| Draw and fully label a flowchart for a given process description. [2SO3] [1L7C3]                                                                                                                                                                                                                | 2%                                              |                   |
| Perform the degree-of-freedom analysis [3SO1] [1L7K1]                                                                                                                                                                                                                                           | 3%                                              |                   |
| Write material balance equations for nonreactive systems. [14SO1] [1L7S1]                                                                                                                                                                                                                       | 14%                                             |                   |
| Calculate fractional excess; fractional conversion; and extent of reaction for a given reaction [10SO1] [1L7S1]                                                                                                                                                                                 | 10%                                             |                   |
| List the three balance methods used in balances on reactive systems [3SO1] [1L7K1]                                                                                                                                                                                                              | 3%                                              |                   |

| Write and solve material balance equations for reactive systems. [10SO1] [1L7S1]        | 10% |  |
|-----------------------------------------------------------------------------------------|-----|--|
| Write material balance equation for reversible and combustion reactions [10SO1] [1L7K1] | 10% |  |
| Write and Solve balance equations of non reactive systems [10SO1, 5SO3] [1L7C3]         | 15% |  |
| Write and solve energy balances for reactive systems [14SO1, 4SO3] [1L7C3]              | 18% |  |
| Solve EOS for ideal and non-ideal gases [3SO1, 2SO3] [1L7C3]                            | 5%  |  |

| Relationship to Program Student Outcomes (Out of 100%) |     |     |     |     |     |     |
|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| SO1                                                    | SO2 | SO3 | SO4 | SO5 | SO6 | S07 |
| 82                                                     |     | 18  |     |     |     |     |

| Relationship to NQF Outcomes (Out of 100%) |      |      |  |  |
|--------------------------------------------|------|------|--|--|
| L7K1                                       | L7S1 | L7C3 |  |  |
| 26                                         | 34   | 40   |  |  |

| Evaluation      |        |  |
|-----------------|--------|--|
| Assessment Tool | Weight |  |
| First           | 25%    |  |
| Second          | 25%    |  |
| Quiz            | 10%    |  |
| Final           | 40%    |  |

| Policy |  |
|--------|--|
|--------|--|

#### Policy

#### Policy

#### Attendance

Attendance will be checked at the beginning of each class. University regulations will be strictly followed for students exceeding the maximum number of absences.

#### Homework

Working homework problems is an essential part of this course and they represent a key opportunity to learn the subjects discussed. All homework problems assigned during a given week are due at the beginning of class on the second meeting of the following week unless otherwise stated. Late homework will not be accepted. Failure to turn in this particular homework on time will result in a grade of 0 (zero) for the homework contribution to your final grade. Team work is encouraged; however, the work one hands in must represent his/her own effort. Homework solutions will be discussed in class. There will be no handouts of homework solutions.

Quizzes Quizzes will be part of this course. No make-up quizzes will be conducted except in the case of a documented emergency

#### Student Conduct

It is the responsibility of each student to adhere to the principles of academic integrity. Academic integrity means that a student is honest with him/herself, fellow students, instructors, and the University in matters concerning his or her educational endeavors. Cheating will not be tolerated in this course. University regulations will be pursued and enforced on any cheating student.

Date Printed: 2023-12-13