

Jordan University of Science and Technology Faculty of Engineering Chemical Engineering Department

CHE345 Heat Transfer - JNQF Level: 7

Second Semester 2023-2024

Course Catalog

3 Credit Hours. Nature and modes of heat transfer, steady-state heat conduction, unsteady-state heat conduction (lumped analysis), principles of convection, empirical relations for natural and forced convection, introduction to boiling & condensation, heat exchangers.

Teaching Method: On Campus

Text Book		
Title	Heat and Mass Transfer: Fundamentals and Applications	
Author(s)	Cengel, Y. and Ghajar, A.,	
Edition	6th Edition	
Short Name	Textbook	
Other Information		

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref #1	Heat Transfer	Holman, J. P.	9th Edition	
Ref #2	Fundamentals of Heat and Mass Transfer	Incropera, F. P.and Dewitt, D. P.,	5th Edition	
Ref#3	Conduction of Heat in Solids	Carslaw , H.S., and Jaeger, J.C.,	2nd Edition	

Instructor		
Name	Prof. Rami Jumah	
Office Location	CH1 L2	

Office Hours	
Email	ramij@just.edu.jo

Class Schedule & Room

Section 1:

Lecture Time: Sun, Tue, Thu : 12:30 - 13:30 Room: القاعة الذكية

Prerequisites		
Line Number	Course Name	Prerequisite Type
222440	CHE244 Fluid Mechanics For Chemical Engineers	Prerequisite / Pass

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Introduction and basic concepts	From Textbook	
Weeks 2, 3	Heat conduction equation	From Textbook	
Weeks 4, 5, 6	Steady heat conduction	From Textbook	
Week 7	Transient heat conduction	Chapter 4 From Textbook	
Week 8	Fundamentals of convection	Chapter 6 From Textbook	
Weeks 9, 10	External forced convection	Chapter 7 From Textbook	
Weeks 11, 12	Internal forced convection	Chapter 8 From Textbook	
Week 13	Natural convection	Chapter 9 From Textbook	
Weeks 14, 15	Heat Exchangers	Chapter 11 From Textbook	

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Explain the basic mechanisms and modes of heat transfer [1SO1] [1L7K1]	20%	
Solve steady-state and transient one-dimensional heat conduction problems [1SO1] [1L7K1]	30%	
Solve forced and free convection heat transfer problems [1SO1] [1L7K1]	30%	
Design double pipe, shell and tube, and cross-flow heat exchangers [1SO2] [1L7S3]	20%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	SO7
80	20					

Relationship to NQF Outcomes (Out of 100%)		
L7K1	L7S3	
80	20	

Evaluation		
Assessment Tool	Weight	
1st	25%	
2nd	25%	
Quizzes and Assignments	10%	
Final	40%	

Policy		
Attendance	Attendance will be checked at the beginning of class. University regulations will be followed for students exceeding the maximum number of absences.	
Quizzes	Quizzes will be part of this course. No make-up quizzes will be conducted except in the case of a documented emergency.	
Student Conduct	It is the responsibility of each student to adhere to the principles of academic integrity. Academic integrity means that a student is honest with him/herself, fellow students, instructors, and the University in matters concerning his or her educational endeavors. Cheating will not be tolerated in this course. University regulations will be pursued and enforced on any cheating student.	

Date Printed: 2024-02-22