

Jordan University of Science and Technology Faculty of Engineering Chemical Engineering Department

CHE364 Mass Transfer - JNQF Level: 7

First Semester 2023-2024

Course Catalog

3 Credit Hours. Molecular diffusion. Mass transfer coefficients. Mass transfer across interface. Analogy between momentum, heat and mass transfer. Continuous and stage-wise processes. Equipment for gas-liquid mass transfer operations. Absorption.

	Text Book
Title	Transport Processes and Unit operations
Author(s)	C.J. Geankoplis, A.A. Hersel & D.H. Lepek
Edition	5th Edition
Short Name	Textbook
Other Information	John Wiley & Sons, 2018

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#1	Fundamentals of Momentum, Heat and Mass Transfer	J. R. Welty, G.L. Rorrer, and D.G. Foster	7th Edition	John Wiley & Sons, 2019
Ref#2	Separation Process Principles	J.D. Seader, E.J. Henley, D.K. Roper	4th Edition	John Wiley & Sons, 2015
Ref#3	Unit Operations of Chemical Engineering	W.L. McCabe, J.C. Smith, and P. Harritt	7th Edition	McGraw-Hill Education, 2005
Ref#4	Mass Transfer Operations	R. E. Treybal	3rd Edition	McGraw-Hill Education, 1980.

Instructor		
Name	Prof. Mohammed Al-Saleh	
Office Location	CH2L2-3	

Office Hours	Sun : 09:30 - 10:30
	Sun : 11:30 - 12:30
	Mon : 08:30 - 10:30
	Tue : 09:30 - 10:30
	Thu : 08:30 - 10:30
Email	mhsaleh@just.edu.jo

Class Schedule & Room

Section 1:

Lecture Time: Sun, Tue, Thu : 12:30 - 13:30 Room: CH2111

Prerequisites		
Line Number	Course Name	Prerequisite Type
223451	CHE345 Heat Transfer	Prerequisite / Study
223410	CHE341 Thermodynamics For Chemical Engineering	Prerequisite / Study

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Introduction to Mass Transfer	From Textbook , From Ref # 1 , From Ref # 2	
Weeks 2, 3, 4, 5	Molecular Diffusion	From Textbook , From Ref # 2	
Week 6	Unsteady-state Mass Transfer	From Textbook , From Ref # 1	
Weeks 6, 7, 8, 9	Convective Mass Transfer	From Textbook , From Ref # 1	
Week 10	Mass Transfer Between Phases	From Textbook , From Ref # 1	
Weeks 11, 12, 13, 14	Absorption and Stripping	From Textbook , From Ref # 1 , From Ref # 2	
Week 15	Presentations & Review		

Mapping of Course Outcomes to Program Outcomes and NQF	Course Outcome	Assessment
Outcomes	Weight (Out of 100%)	method
Describe the fundamental principles and mechanisms of mass transfer [20SO1] [20L7K1]	10%	Project, Final Exam

Estimate the rate of diffusion for equimolar counter diffusion and unidirectional diffusion systems [10SO1] [10L7K1]	12%	Exam #1, HW
Estimate diffusion coefficients for gases and liquids [10SO1] [10L7K1]	7%	Exam #1, HW
Estimate rate of diffusion in solids [5SO1] [5L7K1]	7%	Exam #1, HW
Solve unsteady-state diffusion problems using convenient charts and Fourier series solutions. [10SO1] [10L7K1]	7%	Exam #2, HW
Estimate mass transfer coefficient [10SO1] [10L7K1]	22%	Exam #2, Final Exam, HW
Analyze problems involving mass transfer between phases [10SO1] [10L7K1]	10%	Project, Final Exam
Design tray and packed absorption columns [20SO2] [1L7S3]	20%	Final Exam
Determine the safe operating conditions in absorption towers [5SO2] [1L7S3]	5%	Final Exam

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	SO7
75	25					

Relationship to NQF Outcomes (Out of 100%)		
L7K1	L7S3	
75	25	

Evaluation		
Assessment Tool	Weight	
Exam #1	20%	
Exam #2	20%	
Project	10%	
Final Exam	40%	
HW	10%	

Policy		
Attendance	Attendance will be checked at the beginning of class. University regulations will be followed for students exceeding the maximum number of absences.	
Quizzes	Quizzes will be part of this course. No make-up quizzes will be conducted except in the case of a documented emergency.	

nic integrity. Academic integrity
, and the University in matters
d in this course. University

Date Printed: 2023-12-13