

Jordan University of Science and Technology Faculty of Engineering Chemical Engineering Department

CHE528 Pharmaceutical Process Engineering - JNQF Level: 7

Second Semester 2022-2023

Course Catalog

3 Credit Hours. Industrial processes in the pharmaceutical industry, manufacture of conventional solid and liquid dosage forms, mixing, granulation, tableting, coating, encapsulation, and crystallization.

	Text Book
Title	Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing
Author(s)	David J. am Ende
Edition	1st Edition
Short Name	Ref #1
Other Information	

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref #2	Pharmaceutics: The Design and Manufacture of Midicines	Aulton M.E	3rd Edition	
Ref #3	Unit Operations of Chemical Engineering	McCabe W.L., Smith J.C. and Harriot, P.	7th Edition	
Ref #4	Transport Processes and Separation Process Principles	Geankoplis C.J.	4th Edition	

	Instructor
Name	Prof. Rami Jumah
Office Location	CH1 L2

Office Hours	Sun : 10:30 - 12:30 Mon : 11:00 - 12:00
	Tue : 10:30 - 12:30
	Thu : 10:30 - 11:30
Email	ramij@just.edu.jo

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue, Thu : 12:30 - 13:30 Room: CH2107

Prerequisites				
Line Number	Course Name	Prerequisite Type		
224630	CHE463 Separation Processes	Pre./Con.		
223621	CHE362 Unit Operations	Prerequisite / Study		

Tentative List of Topics Covered				
Weeks	Торіс	References		
Week 1	Introduction	From Ref #1 , From Ref #2		
Week 1	Overview of the Pharmaceutical Industry	From Ref #1 , From Ref #2		
Weeks 2, 3	Industrial Processes in the Pharmaceutical Industry	From Ref #1 , From Ref #2		
Weeks 4, 5, 6, 7, 8, 9	Manufacture of Conventional Solid Dosage Forms	From Ref #1 , From Ref #2		
Week 10	Manufacture of Liquid Dosage Forms	From Ref #1 , From Ref #2		
Weeks 11, 12	Principles and Design of Liquid Mixing Equipment	From Ref #1 , From Ref #3 , From Ref #4		
Weeks 13, 14, 15	Principles and Design of Crystallizers	From Ref #1 , From Ref #3 , From Ref #4		

Mapping of Course Outcomes to Program Outcomes and NQF	Course Outcome	Assessment
Outcomes	Weight (Out of 100%)	method
Be familiar with the pharmaceutical process industry description and characterization [3SO1, 2SO4] [1L7K1, 1L7C2]	5%	

Understand the various industrial processes in the pharmaceutical industry [6SO1, 4SO4] [1L7K1, 1L7C2]	10%	
Understand the methods of preparation and manufacture of powders and granules [6SO1, 4SO4] [1L7K1, 1L7C2]	10%	
Understand the methods of preparation and manufacture of tablets [12SO1, 8SO4] [1L7K1, 1L7C2]	20%	
Understand the methods of preparation and manufacture of hard gelatin and soft gelatin capsules [10SO1, 5SO4] [1L7K1, 1L7C2]	15%	
Understand the methods of preparations and manufacture of liquid dosage forms [7SO1, 3SO4] [1L7K1, 1L7C2]	10%	
Understand the principles and design of mixing equipment [8SO1, 7SO2] [1L7K1, 1L7S2]	15%	
Understand the principles and design of crystallizers [8SO1, 7SO2] [1L7K1, 1L7S2]	15%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	SO7
60	14		26			

Relationship to NQF Outcomes (Out of 100%)		
L7K1	L7S2	L7C2
50	15	35

Evaluation		
Assessment Tool	Weight	
Exam 1	20%	
Exam 2	20%	
Exam 3	20%	
Final Exam	40%	

	Policy
Attendance	Attendance will be checked at the beginning of class. University regulations will be followed for students exceeding the maximum number of absences.
Student Conduct	It is the responsibility of each student to adhere to the principles of academic integrity. Academic integrity means that a student is honest with him/herself, fellow students, instructors, and the University in matters concerning his or her educational endeavors. Cheating will not be tolerated in this course. University regulations will be pursued and enforced on any cheating student.

Date Printed: 2023-12-13