

Jordan University of Science and Technology Faculty of Engineering Chemical Engineering Department

CHE551 Process Dynamics And Control - JNQF Level: 7

Second Semester 2023-2024

Course Catalog

3 Credit Hours. Introduction to practical and theoretical aspects of process control, process modeling, transfer functions, MATLAB, dynamics of open-loop systems, feedback control system, instruments of control system, control laws (P, PI, PD and PID), block diagrams, dynamics of closed-loop systems, stability analysis, root-locus analysis, tuning of controllers, frequency analysis, Bode stability, cascade control, feed-forward control, other control schemes.

Teaching Method: On Campus

Text Book		
Title	Process systems Analysis and Control	
Author(s)	D.R. Coughanowr, S.E. LeBlanc	
Edition	3rd Edition	
Short Name	Textbook	
Other Information	2008	

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#1	Process Dynamics and Control	D.E. Seborg, T.F. Edgar and D.A. Mellichamp	3rd Edition	
Ref#2	Process Control: Designing Processes and Control Systems for Dynamic Performance	T.E. Marlin	2nd Edition	
Ref#3	Principles and Practice of Automatic Process Control	C.A. Smith and A.B. Corripio	2nd Edition	

Instructor		
Name	Prof. Mamdouh Allawzi	
Office Location	CH2 L2	

Office Hours	
Email	mallawzi@just.edu.jo

Class Schedule & Room

Section 1:

Lecture Time: Sun, Tue, Thu : 12:30 - 13:30 Room: CH2107

Prerequisites			
Line Number	Course Name	Prerequisite Type	
224520	CHE452 Applied Mathematics And Modelling For Chemical Engineers	Prerequisite / Study	

Tentative List of Topics Covered				
Weeks	Торіс	References		
Weeks 1, 2	Introduction to basic of process control and closed loop block diagram	From Chapter 1. From Textbook		
Weeks 3, 4	Introduction to laplace transform	From Chapter 2&3 . From Textbook		
Week 5	Response of first order systems and physical examples	From Chapter 4&5. From Textbook		
Week 6	Response of higher order systems	From Chapter 6. From Textbook		
Week 7	Linear closed systems	From Chapter 8. From Textbook		
Weeks 8, 9	Controllers and final control elements	From Chapter 9. From Textbook		
Weeks 10, 11, 12	Closed loop transfer functions and transients response	From Chapter 11&12. From Textbook		
Weeks 13, 14	Controller stability	From Chapter 13. From Textbook		
Week 16	Frequency Response and body stability	From Chapter 14&15. From Textbook		

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Apply the fundamentals of Laplace transforms in order to perform the dynamics of chemical systems. [1SO1] [1L7K1]	15%	
Utilize fundamentals of mathematical modelling in order to perform system response analysis and characteristics for open loop system. [1SO1] [1L7K1]	20%	
Implement fundamental knowledge of closed-loop control systems to determine system response to feedback close loop. [1SO1] [1L7S1]	25%	

Design the controller, final control element (i.e. Valve design) and Transmitters. [1SO2] [1L7C1]	20%	
Design the controller stability. [1SO2] [1L7S2]	10%	
Perform controller tuning using mathematical techniques and computer software (Matlab). [1SO6] [1L7C2]	10%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	SO7
60	30				10	

Relationship to NQF Outcomes (Out of 100%)				
L7K1	L7S1	L7S2	L7C1	L7C2
35	25	10	20	10

Evaluation		
Assessment Tool Weight		
Homework & Quizzes	10%	
1st Exam	25%	
2nd Exam	25%	
Final Exam	40%	

Policy		
assignments	Each assignment is due one week later	
Cheating	Cheating Not tolerated. University rules will be strictly applied	
Attendance	Attendance is very important for the course. Students missing more than 10% of total classes (5 lectures) are not allowed to enter the FINAL Exam according to university regulations.	

Date Printed: 2024-03-03