

Jordan University of Science and Technology Faculty of Engineering Chemical Engineering Department

CHE762 Process Analysis And Control - JNQF Level: 9

Second Semester 2021-2022

Course Catalog

3 Credit Hours. Introduction to practical and theoretical aspects of process control, process modeling, feedback control system, and instruments of the control system. Stability analysis tuning of controllers, frequency analysis, Bode stability, cascade control, feed-forward control. Adaptive control system. Multiple input multiple output (MIMO) system. Interaction and decoupling. Sampled-data control theory with applications in digital computer control systems. Nonlinear methods of dynamic process analysis. Optimal control via calculus of variations and the maximum principle. State space representation. This course includes lab/ simulation component

Teaching Method: On Campus

Text Book				
Title	Chemical Process Control An Introduction to Theory and Practice			
Author(s)	George Stephanopoulos			
Edition	3rd Edition			
Short Name	Textbook			
Other Information	P T R PRENTICE HALL			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#1	Process Dynamics and Control	D.E. Seborg, T.F. Edgar and D.A. Mellichamp	2nd Edition	John Wiley, 1989.
Ref#1	Process Dynamics and Control	D.E. Seborg, T.F. Edgar and D.A. Mellichamp	2nd Edition	John Wiley, 1989.
Ref#2	Process Analysis and Control	D.R. Coughanowr, S.E. LeBlanc	3rd Edition	McGraw-Hill?s, 2008.

Instructor

Name	Prof. Mamdouh Allawzi
Office Location	CH2 L2
Office Hours	
Email	mallawzi@just.edu.jo

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue : 13:00 - 14:30 Room: U

Tentative List of Topics Covered				
Weeks	Торіс	References		
Weeks 1, 2	Dynamic behavior of feedback control system	From Textbook		
Weeks 3, 4	Design of feedback control system	From Textbook		
Weeks 5, 6	design of feedback control system using frequency response	From Textbook		
Weeks 5, 6	design of feedback control system using frequency response	From Textbook		
Week 7	Dead time and inverse response compensator	From Textbook		
Week 7	control system wit multiple loops	From Textbook		
Week 8	Feedforward and ratio controller	From Textbook		
Week 9	Adaptive and inferential control systems	From Textbook		
Week 10	Multiple Input-Multiple output system (MIMO) control system	From Textbook		
Week 11	Interaction and decoupling of control loops-Bristol array method	From Textbook		
Week 12	Digital computer control loops- from continuous to discrete	From Textbook		
Week 13	Z-Transforms	From Textbook		
Week 14	Discrete time response	From Textbook		
Week 15	Design of digital feedback control system	From Textbook		
Week 16	Sate space representation	From Textbook		

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Apply the fundamentals of laplace transforms in order to perform dynamics of chemical systems. Analysis system interactions [1L9K1]	20%	
Apply fundamentals of mathematical modelling in order to perform system response analysis and characteristics for feedforward control system [1L9S3]	20%	

Apply fundamental knowledge of closed loop control system to determine system response using adaptive control system [1L9K1]	20%	
Analyzed multiple input and multiple output (MIMO) control systems. Check for interaction and design decoupler to avoid interaction [1L9C6]	20%	
Apply Z -transform in order to design a discrete control system [1L9K1]	20%	

Relationship to Program Student Outcomes (Out of 100%)						
1	2	3	4	5	6	7

Relationship to NQF Outcomes (Out of 100%)				
L9K1	L9S3	L9C6		
60	20	20		

Policy			
Attendance	Attendance will be checked at the beginning of each class. University regulations will be strictly followed for students exceeding the maximum number of absences.		
Homework	Homework problems are assigned during lectures and usually due one week later. Late homework will not be accepted. Try to solve the problems independently. The assigned problems will be collected, graded, and returned to you in lecture.		
Students conduct	It is the responsibility of each student to adhere to the principles of academic integrity. Academic integrity means that a student is honest with him/herself, fellow students, instructors, and the University in matters concerning his or her educational endeavors. Cheating will not be tolerated in this course. University regulations will be pursued and enforced on any cheating student.		

Date Printed: 2024-10-30