

Jordan University of Science and Technology Faculty of Engineering Chemical Engineering Department

CHE780 Special Topics	CHE780	Special	Topics
-----------------------	--------	---------	--------

Second Semester 2023-2024

Course Catalog

3 Credit Hours. A Structured course on advanced topics in chemical engineering and is counted only once towards the graduation requirements. The special topic for the second semester 2023/2024 is as follows: Title: Instumental Analysis Description: measurements basics, Atomic Spectroscopy (Introduction, Atomic Absorption, Atomic Emission, Atomic Mass and Atomic X-Ray), Molecular Spectroscopy (Introduction to Ultraviolet-Visible Molecular Absorption and Applications, Infrared spectrometry and its application, Surface Characterization by Spectroscopy and Microscopy), separation methods of analysis (Introduction, gas chromatography, liquid chromatography, supercritical fluid chromatography) and thermal methods of analysis,

Teaching Method: Blended

Text Book					
Title	Principles of Instrumental Analysis				
Author(s)	Douglas A. Skoog, F. James Holler, Stanley R. Crouch				
Edition	6th Edition				
Short Name	Text book				
Other Information	Cengage Learning				

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#1	Quantitative Chemical Analysis	Daniel Harris	6th Edition	W. H. Freeman and Company

Instructor					
Name Prof. Mohammad Al Harahsheh					
Office Location	Office Location -				
Office Hours					
Email	msalharahsheh@just.edu.jo				

Class Schedule & Room

Section 1:

Lecture Time: Sun, Tue: 10:30 - 11:30

قاعة الماجستير :Room

Tentative List of Topics Covered					
Weeks	Торіс	References			
Week 1	Introduction	Chapter 1 From Text book			
Week 2	Signal and Noise	Chapter 5 From Text book			
Week 3	An Introduction to Spectrometric Methods	Chapter 6 From Text book			
Week 4	Atomic Absorption Spectrometry	Chapter 9 From Text book			
Week 5	Atomic Emission Spectrometry	Chapter 10 From Text book			
Week 6	Atomic and Molecular Mass Spectrometry	Chapters 11 & 20 From Text book			
Week 7	Atomic X-ray Spectrometry	Chapter 12 From Text book			
Week 8	Ultraviolet-Visible Molecular Absorption Spectrometry	Chapters 13 & 14 From Text book			
Week 9	Infrared Spectrometry	Chapter 16 From Text book			
Week 10	An Introduction to Chromatographic Separations	Chapter 26 From Text book			
Week 11	Gas Chromatography	Chapter 27 From Text book			
Week 12	High-Performance Liquid Chromatography	Chapter 28 From Text book			
Week 13	Supercritical Fluid Chromatography and Extraction	Chapter 29 From Text book			
Week 14	Thermal Methods of Analysis	Chapter 31 From Text book			
	Surface Characterization by Spectroscopy and Microscopy	Chapter 21 From Text book			

Mapping of Course Outcomes to Program Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Describe measurement basics, errors, signals, noise and their evaluation methods	15%	
Outline the basic principles of spectroscopic methods and the basics of electromagnetic radiation related to spectroscopic methods	15%	
Discus the basics of atomic (Absorption, emission, and mass spectroscopy) and molecular spectroscopic methods, their instruments' components and their principles of operation	25%	
Compare and contrast the principles of separation methods of analysis (gas, liquid, and high performance liquid chromatography) and thermal methods of analysis (TGA, DTA and DSC)	25%	

Recommend suitable instrumental method for particular analysis problem both for qualitative and quantitative determinations	5%	
Examine selected example problems of selected instrumental analysis methods to cover both for qualitative and quantitative determinations	15%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	S07

Evaluation			
Assessment Tool	Weight		
Mid Exam	35%		
Activities	15%		
Final	50%		

Date Printed: 2024-02-25