

# Jordan University of Science and Technology Faculty of Engineering Civil Engineering Department

CE736 Advanced Structural Mechanics

First Semester 2024-2025

### **Course Catalog**

3 Credit Hours. The objective of this course is to learn how to formulate problems and how to reduce vague questions and ideas to precise mathematical statements. In this course we deal with the fundamental principles that underlie such differential equations and boundary conditions and to participate in solving some of these equations. Mechanics of Materials is a subset of Continuum Mechanics and Mechanics of Deformable Solids bridging the gap between Structural Mechanics and Engineering Material Science. Mechanics of Materials rationalizes approximate solutions which are the basic design formulas in Structural Engineering and relates them to analysis solutions from the Theory of Elasticity and Theory of Plasticity. The objectives of Mechanics of Materials can be summarized as the analysis and design of solids and structures according to strength, stiffness, and stability.

#### Teaching Method: On Campus

| Text Book            |                                               |  |  |  |  |  |  |
|----------------------|-----------------------------------------------|--|--|--|--|--|--|
| Title                | Advanced Mechanics of Materials               |  |  |  |  |  |  |
| Author(s)            | P. Boresi, R.J. Schmidth and O. M. Sidebottom |  |  |  |  |  |  |
| Edition              | 5th Edition                                   |  |  |  |  |  |  |
| Short Name           | Reference #1                                  |  |  |  |  |  |  |
| Other<br>Information | John Wiley & Sons Inc., USA.                  |  |  |  |  |  |  |

#### **Course References**

| Short name   | Book name                        | Author(s)   | Edition     | Other Information         |  |
|--------------|----------------------------------|-------------|-------------|---------------------------|--|
| Reference #2 | Mechanics of composite materials | R. M. Jones | 5th Edition | McGraw-Hill, last edition |  |

| Instructor                   |       |  |  |  |  |
|------------------------------|-------|--|--|--|--|
| Name Prof. Ghazi Abu-Farsakh |       |  |  |  |  |
| Office Location              | C2 L3 |  |  |  |  |

| Office Hours | Mon : 11:30 - 13:00<br>Mon : 14:30 - 16:00<br>Tue : 13:00 - 14:00<br>Wed : 11:30 - 13:00<br>Wed : 14:30 - 16:00<br>Thu : 12:00 - 13:00 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Email        | ghazi@just.edu.jo                                                                                                                      |

## **Class Schedule & Room**

Section 1:

Lecture Time: Mon, Wed : 13:00 - 14:30 Room: C2008

| Tentative List of Topics Covered |                                                             |                          |  |  |  |  |  |  |
|----------------------------------|-------------------------------------------------------------|--------------------------|--|--|--|--|--|--|
| Weeks                            | Торіс                                                       | References               |  |  |  |  |  |  |
| Weeks 1, 2, 3                    | PRELIMINARIES: NOTATION, MATRIX, VECTOR AND TENSOR ANALYSIS |                          |  |  |  |  |  |  |
| Weeks 4, 5                       | ANAL YSIS OF STRESS- STATIC CONCEPTS                        | From <b>Reference #1</b> |  |  |  |  |  |  |
| Weeks 6, 7                       | ANALYSIS OF STRAIN- GEOMETRIC CONCEPTS                      | From <b>Reference #1</b> |  |  |  |  |  |  |
| Weeks 8, 9                       | CONSTITUTIVE RELATIONS- MATERIAL DESCRIPTIONS               | From <b>Reference #1</b> |  |  |  |  |  |  |
| Weeks 10, 11                     | 5. FLEXURAL THEORY                                          | From <b>Reference #1</b> |  |  |  |  |  |  |
| Weeks 12, 13                     | 2D-PROBLEMS IN ELASTICITY                                   | From <b>Reference #1</b> |  |  |  |  |  |  |
| Weeks 14, 15                     | MECHANICS OF COMPOSITE MATERIALS                            | From <b>Reference #2</b> |  |  |  |  |  |  |
| Week 16                          | Seminars                                                    |                          |  |  |  |  |  |  |

| Mapping of Course Outcomes to Program Outcomes                                                                 | Course Outcome Weight<br>(Out of 100%) | Assessment<br>method |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|
| To be able to express and employ various notations: matrix, vector and tensor formulations in problem analysis | 10%                                    |                      |
| To be able to analyze stress-static concepts                                                                   | 20%                                    |                      |
| To be able to analyze strain-geometric concepts                                                                | 20%                                    |                      |
| To be able to construct constitutive relations of the material in order to express and describe its' behavior  | 20%                                    |                      |
| To be able to formulate and compose total strain energy and its components                                     | 10%                                    |                      |

| Relationship to Program Student Outcomes (Out of 100%) |      |       |       |       |       |       |       |       |       |       |       |
|--------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| PI-1a                                                  | Pŀ2a | PI-2b | PI-2c | PI-2d | PI-3a | PI-4a | PI-4b | PI-5a | PI-6a | PI-6b | PI-7a |
|                                                        |      |       |       |       |       |       |       |       |       |       |       |

Date Printed: 2024-10-24