

Jordan University of Science and Technology Faculty of Engineering Civil Engineering Department

CE755 Physical And Chemical Processes - JNQF Level: 9

Second Semester 2023-2024

Course Catalog

3 Credit Hours. Physiochemical and transformation processes in natural and engineered environmental systems; process modeling; design of operations involving state and phase transformation; chemical oxidation, reduction, sorption; stripping; and exchange processes; membrane separations, particle aggregation and coagulation, sedimentation and filtration.

Teaching Method: On Campus

Text Book							
Title	Title Physicochemical Processes for Water Quality Control						
Author(s)	Weber, W.J., Jr.						
Edition	Edition 1st Edition						
Short Name	W						
Other Information	Wiley? Inter-science, New York, 1972						

Course References

Short name	Book name	Author(s)	Edition	Other Information
MWH	Water Treatment: Principles and Design	MWH	3rd Edition	John Wiley and Sons, Inc., Hoboken, New Jersey, 2012.
AWWA	Water Quality and Treatment	AWWA	4th Edition	McGraw Hill, Inc. 1990.
AWWA2	Water Treatment Plant Design	AWWA	1st Edition	McGraw Hill, Inc. 1990

Instructor				
Name	ame Prof. Wa'il Abu-El-Sha'r			
Office Location	C5L1			

Office Hours	
Email	wail@just.edu.jo

Class Schedule & Room

Section 1:

Lecture Time: Thu: 12:30 - 15:30

Room: C2009

Tentative List of Topics Covered					
Weeks	Topic	References			
Week 1	TRANSFORMATION PROCESSES Introduction and Overview	From W, From MWH, From AWWA, From AWWA2			
Week 2	Phase Transformations: Volatilization / Stripping Processes	From W , From MWH			
Week 3	Species Transformations: Oxidation / Reduction Processes	From W , From MWH			
Week 4	Phase and Species Transformations: Dissolution / Precipitation Processes	From W , From MWH			
Week 5	PARTICLE SEPARATION PROCESSES ? Particle Aggregation: Colloid Stability and Destabilization Coagulation / Flocculation Processes	From W			
Week 6	Particle Removal: Sedimentation Processes Flotation Processes	From W , From MWH			
Week 7	Filtration Processes	From W			
Week 8	SOLUTE SEPARATION PROCESSES Solute Partitioning:	From W			
Weeks 9, 10	Sorption Phenomena Adsorption Processes	From W			
Weeks 10, 11	lon Exchange Processes	From W			
Week 12	Solute / Solvent Exclusion: Reverse Osmosis	From W , From MWH			
Week 13	Ultrafiltration and Electrodialysis	From W , From MWH			
Weeks 14, 15	INTRODUCTION TO THE USE OF NANOTECHNOLOGY IN WATER QUALITY CONTROL				
Week 16	Projects Presentation				

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
To be able to apply knowledge of physical and Chemical processes in Water Quality Control [1L9S1]	30%	
To be able to apply the best available technologies for designing project to treat water from trace organic contaminants. [1L9S3]	40%	
To characterize water resources and identify pollutants to be treated and suggest a treatment scheme (treatment plant) [1L9S2]	30%	

Relationship to Program Student Outcomes (Out of 100%)											
Pl-1a	Pl-2a	Pl-2b	Pl-2c	Pl-2d	Pl-3a	Pl-4a	Pl-4b	Pl-5a	Pl-6a	Pl-6b	Pl-7a

Relationship to NQF Outcomes (Out of 100%)						
L9S1	L9S2	L9S3				
30	30	40				

Date Printed: 2024-10-27