

Jordan University of Science and Technology Faculty of Engineering Electrical Engineering Department

Summer Semester 2019-2020

Course Catalog

3 Credit Hours. Units and definitions; experimental laws and simple circuits; useful techniques of circuit analysis; inductance and capacitance; source-free RL and RC circuits; application of the unit step forcing function; RLC circuits; the sinusoidal forcing function; the phasor concept; the sinusoidal steady-state response. Average power and RNS values.

Text Book			
Title	Engineering Circuit Analysis		
Author(s)	W. H. Hayt, Jr., J. E. Kemmerly, and S.M. Durbin		
Edition	8th Edition		
Short Name	Ref#1		
Other Information			

Course References

Short name	Book name	Book name Author(s)		Other Information
Ref#2	Fundamentals of Electric Circuits	C. K. Alexander and M. N. O. Sadiku	3rd Edition	

Instructor			
Name	Dr. SARI KHATALIN		
Office Location	E1L3		
Office Hours			
Email	smkhatalin@just.edu.jo		

Class Schedule & Room

Section 1:

Lecture Time: Sun, Mon, Tue, Wed: 10:00 - 11:30

,...و الكترونية :Room

Tentative List of Topics Covered			
Weeks	References		
Week 1	Introduction to Circuit Analysis and Design	From Ref#1	
Week 2	Basic Components and Electric Circuits	From Ref#1	
Week 3	Voltage and Current Laws	From Ref#1	
Weeks 4, 5	Basic Nodal and Mesh Analysis	From Ref#1	
Weeks 6, 7	Circuit Analysis Techniques	From Ref#1	
Week 8	Capacitors and Inductors.	From Ref#1	
Weeks 9, 10	Basic RL and RC Circuits.	From Ref#1	
Weeks 11, 12	The RLC Circuit.	From Ref#1	
Weeks 13, 14	Sinusoidal Steady State Analysis.	From Ref#1	
Week 15	AC Power Circuit analysis.	From Ref#1	

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Ability to apply basic circuit laws and rules on DC circuits. [15ABET1, 5ABET6]	20%	
. Understand and apply circuit theorems [15ABET1, 5ABET6]	20%	
Ability to analyze first and second order transient circuits [15ABET1, 5ABET6]	20%	
Ability to analyze steady state sinusoidal circuits [15ABET1, 10ABET6]	25%	
Ability to compute various types of power. [10ABET1, 5ABET6]	15%	

Relationship to Program Student Outcomes (Out of 100%)						
ABET1	ABET2	ABET3	ABET4	ABET5	ABET6	ABET7
70					30	

Date Printed: 2020-09-24