

Jordan University of Science and Technology Faculty of Engineering Electrical Engineering Department

EE345 Introduction To Microcontrollers

Second Semester 2020-2021

Course Catalog

3 Credit Hours. Digital systems and binary numbers. Boolean algebra and logic gates, gate-level minimization, combinational logic, synchronous sequential logic, registers and counters, memory and programmable logic (Equivalent CPE 234 Digital logic design and computer architecture).

Text Book				
Title	Digital Design			
Author(s)	M. Mano and M. Ciletti			
Edition	5th Edition			
Short Name	Main reference			
Other Information				

Instructor		
Name	Prof. Ahmad Abu-El-Haija	
Office Location	E1 L-2	
Office Hours	Sun : 10:30 - 12:30 Mon : 08:30 - 10:30 Tue : 08:30 - 10:30 Thu : 11:30 - 12:30	
Email	haija@just.edu.jo	

Class Schedule & Room

Section 1:

Lecture Time: Sun, Tue : 13:00 - 14:30 Room: الكترونية 150

Tentative List of Topics Covered				
Weeks	Торіс			
Weeks 1, 2	Digital Systems and Binary Numbers: introduction to digital systems, binary numbers, number- base conversions, octal and hexadecimal numbers, complements, signed binary numbers, binary codes, storage and registers, binary logic	From Main reference		
Weeks 3, 4	Boolean Algebra and Logic Gates: basic definitions, theorems and properties of Boolean algebra, canonical and standard forms, other logic functions, digital logic gates, integrated circuits	From Main reference		
Weeks 5, 6	Gate-Level Minimization: the map method, four-variable maps, product-of-cums simplification, don't-care conditions, NAND & NOR implementation, other two-level implementations, exclusive-OR function	From Main reference		
Weeks 7, 8	Combinational Logic: combinational circuits, analysis and design procedures, binary adder- subtractor, decimal adder, binary multiplier, magnitude comparator, decoders, encoders, multiplexers			
Weeks 9, 10, 11	Sequential and Synchronous Logic: introduction to sequential circuits, latches, flip-flops, analysis of clocked sequential circuits, state reduction and assignment, design procedure of clocked sequential circuits	From Main reference		
Weeks 12, 13	Registers and Counters: registers, shift registers, ripple counters, binary counters, other counters			
Weeks 14, 15	Memory and Programmable Logic: random access memory, read & write operations, memory types, memory cell, 4 x 4 RAM, decoding & addressing, read-only memory, programmable logic arrays			

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Students should be able to express numbers in different radix systems and convert among them, and perform arithmetic using binary numbers and complements	10%	Midterm Exam, Quizzes, Final exam
Express logic functions using Boolean algebra, and analyze simple combinational circuits	15%	Midterm Exam, Quizzes, Final exam
Design simple combinational logic circuits using standard gates and commercially available integrated circuits such as NAND gates, multiplexers, decoders, etc	30%	Midterm Exam, Quizzes, Final exam
Design simple sequential logic circuits using standard gates and commercially available integrated circuits such as flip-flops, registers, counters, etc.	30%	Midterm Exam, Quizzes, Final exam
Understand the design and construction of random access memory, read only memory, and programmable devices, and using these devices to construct combinational circuits	15%	Quizzes, Final exam

Relationship to Program Student Outcomes (Out of 100%)						
ABET1	ABET2	ABET3	ABET4	ABET5	ABET6	ABET7

Evaluation			
Assessment Tool	Weight		
Midterm Exam	25%		
Quizzes	25%		
Final exam	50%		

	Policy
Course Assessment	Exams: There is one midterm (25 points), 6-8 quizzes (total 25 points) and one final exam (50 points).

Date Printed: 2021-06-17