

Jordan University of Science and Technology Faculty of Engineering Electrical Engineering Department

EE525 Electronic Circuit Design

Second Semester 2022-2023

Course Catalog

3 Credit Hours. Analysis and design of analog integrated circuits; transistor models; simple and advanced current mirrors; single-ended amplifiers; differential amplifiers; operational amplifiers; frequency response.

Text Book			
Title	Analysis and Design of Analog Integrated Circuits		
Author(s)	Paul Gray et al		
Edition	5th Edition		
Short Name	Texbook		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref #1	Design of Analog CMOS Integrated Circuits	Behzad Razavi	1st Edition	
Ref #2	CMOS Circuit Design, Layout, and Simulation	Jacob Baker	3rd Edition	

Instructor			
Name	Dr. Fadi Nessir Zghoul		
Office Location	E2-L3		
Office Hours			
Email	frnessirzghoul@just.edu.jo		

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue : 11:30 - 12:30 Room: C3018

Prerequisites			
Line Number	Course Name	Prerequisite Type	
243202	EE320 Electronic Circuits	Prerequisite / Study	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Long Channel Model	From Texbook	
Week 2	Small signal model	From Texbook	
Week 3	gm/id methodology	From Texbook	
Week 3	Technology characterization	From Texbook	
Week 4	gm-id based design	From Texbook	
Week 5	Extrinc capacitance	From Texbook	
Week 6	Miller approximation	From Texbook	
Weeks 7, 8	Electronic noise	From Ref #1	
Week 9	Backgate and common gate	From Ref #2	
Week 10	Common drain	From Ref #2	
Week 11	Differential pair	From Texbook	
Week 12	Current mirror and offset	From Texbook	
Week 13	Process variation and feedback	From Texbook	
Week 14	Fully differential amplifier	From Texbook	
Week 15	Feedback and stability analysis	From Texbook	
Week 16	Two-stage OTA	From Texbook	

Mapping of Course Outcomes to Program Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Analysis and design of analog integrated circuits. [1ABET1]	40%	First, Final Exam, Participation, Second
Understand frequency response [1ABET1]	10%	First, Final Exam, Participation, Second

Understand feedback theory [1ABET1]	10%	First, Final Exam, Participation, Second
Introduce stability analysis [1ABET1]	10%	First, Final Exam, Participation, Second
Introduce nonidealities and noise [1ABET1]	20%	First, Final Exam, Participation, Second
Familiar with CAD tools for circuit analysis and design [1ABET1]	10%	First, Final Exam, Participation, Second

Relationship to Program Student Outcomes (Out of 100%)						
ABET1	ABET2	ABET3	ABET4	ABET5	ABET6	ABET7
100						

Evaluation			
Assessment Tool	Weight		
First	20%		
Final Exam	40%		
Participation	20%		
Second	20%		

Date Printed: 2023-09-16