

## Jordan University of Science and Technology Faculty of Engineering Electrical Engineering Department

## EE701 Applied Mathematics For Engineers - JNQF Level: 9

Second Semester 2023-2024

**Course Catalog** 

3 Credit Hours. Ordinary differential equations. Laplace transformation. Fourier analysis. Partial differential equations. Complex numbers, variables, and functions. Complex integrals. Complex series. Laurent series and Residue theory. Conformal mapping.

Teaching Method: On Campus

| Text Book            |                                  |  |
|----------------------|----------------------------------|--|
| Title                | Advanced Engineering Mathematics |  |
| Author(s)            | James Cochran                    |  |
| Edition              | 2nd Edition                      |  |
| Short Name           | [1]                              |  |
| Other<br>Information |                                  |  |

## **Course References**

| Short<br>name | Book name                                                                          | Author(s)      | Edition         | Other<br>Information |
|---------------|------------------------------------------------------------------------------------|----------------|-----------------|----------------------|
| [2]           | Mathematical Methods for Engineers                                                 | R. Livesley    | 1st<br>Edition  |                      |
| [3]           | Foundation of Mathematics for Engineers                                            | J. Berry       | 1st<br>Edition  |                      |
| [4]           | Special Functions of Mathematics for Engineers                                     | L. Andrews     | 1st<br>Edition  |                      |
| [5]           | Mathematical Methods for Scientists and Engineers:<br>Linear and Nonlinear Systems | P. Kahn        | 1st<br>Edition  |                      |
| [6]           | Advanced Engineering Mathematics                                                   | Erwin Kreyszig | 10th<br>Edition |                      |

| [7] | Applied Analysis                            | Allan Krall                        | 1st<br>Edition |  |
|-----|---------------------------------------------|------------------------------------|----------------|--|
| [8] | Special Functions                           | Z X Wang, D R Guo,<br>Zhi Xu Wang  | 1st<br>Edition |  |
| [9] | Linear and Nonlinear Differential Equations | I. D. Huntley and R. M.<br>Johnson | 1st<br>Edition |  |

| Instructor      |                                                                                          |  |
|-----------------|------------------------------------------------------------------------------------------|--|
| Name            | Prof. Mohammed Al Salameh                                                                |  |
| Office Location | E2L3                                                                                     |  |
| Office Hours    | Sun : 08:30 - 09:00<br>Mon : 10:00 - 12:30<br>Wed : 10:00 - 12:00<br>Thu : 10:30 - 11:30 |  |
| Email           | salameh@just.edu.jo                                                                      |  |

## **Class Schedule & Room**

Section 2: Lecture Time: Thu : 11:30 - 14:30 Room: LAB

| Tentative List of Topics Covered |                                          |            |  |
|----------------------------------|------------------------------------------|------------|--|
| Weeks                            | Торіс                                    | References |  |
| Week 1                           | Introduction                             |            |  |
| Weeks 2, 3                       | Ordinary differential equations          |            |  |
| Weeks 4, 5, 6                    | Laplace transform                        |            |  |
| Weeks 7, 8, 9                    | Fourier series and integral              |            |  |
| Weeks 10, 11, 12                 | Partial differential equations           |            |  |
| Weeks 13, 14, 15, 16             | Complex variables, series, and integrals |            |  |

| Mapping of Course Outcomes to Program Outcomes and NQF Outcomes                                                                                                                                       | Course<br>Outcome Weight<br>(Out of 100%) | Assessment<br>method    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|
| The student will be able to solve ordinary differential equations with constant coefficients along with applying the initial and boundary conditions. [1SO1] [1L9S1]                                  | 12%                                       | 1st Exam,<br>Final Exam |
| The student will be able to solve partial differential equations using the method of separation of variables, ensuring that the solutions satisfy the initial and boundary conditions. [1SO1] [1L9S1] | 13%                                       | 1st Exam,<br>Final Exam |
| The student will be able to construct the Fourier series for any function by performing the required integrals. [1SO1] [1L9S1]                                                                        | 12%                                       | 2nd Exam,<br>Final Exam |

| The student will be able to construct the Laplace transform for any function by performing the required integrals. [1SO1] [1L9S1]                       | 13% | 2nd Exam,<br>Final Exam |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------|
| The student will be able to solve functions and equations that involve complex variables [1SO1] [1L9S1]                                                 | 12% | Final Exam              |
| The student will be able to solve integrals that involve complex variables by the residue theorem [1SO1] [1L9S1]                                        | 13% | Final Exam              |
| The student will be able to apply conformal mapping from the complex z-plane to the complex w-plane according to defined transformations [1SO1] [1L9S1] | 12% | Final Exam              |
| The student will be able to evaluate the coefficients of the complex series representing a complex function [1SO1] [1L9S1]                              | 13% | Final Exam              |

| Relationship to Program Student Outcomes (Out of 100%) |     |     |     |     |     |     |
|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| SO1                                                    | SO2 | SO3 | SO4 | SO5 | SO6 | S07 |
| 100                                                    |     |     |     |     |     |     |

| Relationship to NQF Outcomes (Out of 100%) |
|--------------------------------------------|
| L9S1                                       |
| 100                                        |

| Evaluation      |        |  |
|-----------------|--------|--|
| Assessment Tool | Weight |  |
| 1st Exam        | 25%    |  |
| 2nd Exam        | 25%    |  |
| Final Exam      | 50%    |  |

|            | Policy                                        |
|------------|-----------------------------------------------|
| Attendance | Attendance will be considered in each lecture |

Date Printed: 2024-07-29