

## Jordan University of Science and Technology Faculty of Engineering Electrical Engineering Department

EE730 Advanced Power System Analysis - JNQF Level: 9

First Semester 2023-2024

**Course Catalog** 

3 Credit Hours. Advanced Power Systems Analysis: 3 Credit hours (3 h lectures). Power Flow, Economic Dispatch, Introduction to Optimization, State Estimation in Power Systems, Optimal Power Flow, Power system Security, Unit Commitment.

Teaching Method: On Campus

| Text Book            |                                         |  |  |
|----------------------|-----------------------------------------|--|--|
| Title                | Power Generation, Operation and Control |  |  |
| Author(s)            | Allen. J. Wood and Bruce F. Wollenberg  |  |  |
| Edition              | 1st Edition                             |  |  |
| Short Name           | Textbook                                |  |  |
| Other<br>Information |                                         |  |  |

| Instructor      |                                                                                          |  |  |
|-----------------|------------------------------------------------------------------------------------------|--|--|
| Name            | Dr. AHMAD ABU ELRUB                                                                      |  |  |
| Office Location | E1L2                                                                                     |  |  |
| Office Hours    | Mon : 08:30 - 10:00<br>Tue : 13:00 - 14:30<br>Wed : 08:30 - 10:00<br>Thu : 08:30 - 10:00 |  |  |
| Email           | amabuelrub@just.edu.jo                                                                   |  |  |

**Class Schedule & Room** 

Section 1: Lecture Time: Tue : 14:30 - 17:30 Room: LAB

| Tentative List of Topics Covered |                                   |            |  |
|----------------------------------|-----------------------------------|------------|--|
| Weeks                            | Торіс                             | References |  |
| Weeks 1, 2                       | Review of power flow              |            |  |
| Weeks 3, 4                       | Review of economic dispatch       |            |  |
| Weeks 5, 6                       | Introduction to optimization      |            |  |
| Weeks 7, 8                       | State estimation in power systems |            |  |
| Weeks 9, 10                      | Power system security             |            |  |
| Weeks 11, 12                     | Optimal power Flow                |            |  |
| Weeks 13, 14, 15                 | Unit commitment                   |            |  |

| Mapping of Course Outcomes to Program Outcomes and NQF<br>Outcomes                                                                               | Course Outcome<br>Weight (Out of<br>100%) | Assessment<br>method |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|
| Apply numerical methods for solving power flow equations. [1L9K1]                                                                                | 10%                                       |                      |
| Formulate and solve economic dispatch optimization problems. [1L9K1]                                                                             | 10%                                       |                      |
| Develop a solid understanding of optimization techniques applicable to power systems. [1L9K1]                                                    | 10%                                       |                      |
| Understand the importance of state estimation in real-time power system operation and implement and analyze state estimation algorithms. [1L9K1] | 15%                                       |                      |
| Identify and evaluate potential security threats to power systems. [1L9K1]                                                                       | 10%                                       |                      |
| Formulate and solve optimal power flow problems. [1L9K1]                                                                                         | 10%                                       |                      |
| Formulate and solve unit commitment optimization problems. [1L9K1]                                                                               | 10%                                       |                      |
| Conduct in-depth research on a specific topic related to advanced power system analysis. [1L9C1]                                                 | 25%                                       |                      |

| Relationship to Program Student Outcomes (Out of 100%) |     |     |     |     |     |     |
|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| SO1                                                    | SO2 | SO3 | SO4 | SO5 | SO6 | SO7 |
|                                                        |     |     |     |     |     |     |

| Relationship to NQF Outcomes (Out of 100%) |      |  |  |
|--------------------------------------------|------|--|--|
| L9K1                                       | L9C1 |  |  |
| 75                                         | 25   |  |  |

| Evaluation      |        |  |  |
|-----------------|--------|--|--|
| Assessment Tool | Weight |  |  |
| First exam      | 20%    |  |  |
| Second exam     | 20%    |  |  |
| Homework        | 10%    |  |  |
| Final exam      | 50%    |  |  |

Date Printed: 2024-10-28