

Jordan University of Science and Technology Faculty of Engineering Electrical Engineering Department

EE733 Power Systems Planning - JNQF Level: 9

Second Semester 2023-2024

Course Catalog

3 Credit Hours. 3 Credit hours (3 h lectures).Power flow, economic dispatch, optimal power flow, optimization and economic concepts for power systems, modular view of individual electric energy processing components, physical and market operations.

Teaching Method: On Campus

Text Book			
Title	Fundamentals of Power System Economics		
Author(s)	D.S. Kirschen and G. Strbac		
Edition	1st Edition		
Short Name	Textbook		
Other Information			

Course References

Short name	Book name	Author(s)		Other Information
Ref #1	Power Generation, Operation, and Control	Allen. J. Wood and Bruce F. Wollenberg	3rd Edition	
Ref #2	Published papers assigned by the instructor	NA	1st Edition	

Instructor		
Name	Dr. AHMAD ABU ELRUB	
Office Location	E1L2	

Office Hours	Sun : 11:00 - 12:30 Mon : 11:30 - 13:00 Tue : 11:00 - 12:30 Wed : 11:30 - 13:00
Email	amabuelrub@just.edu.jo

Class Schedule & Room

Section 2: Lecture Time: Tue : 14:30 - 17:30 Room: LAB

Tentative List of Topics Covered				
Weeks	Торіс	References		
Week 1	Revision to DC power flow and economic dispatch	From Ref #1		
Week 2	Revision to optimal power flow	From Ref #1		
Weeks 3, 4	Basic Concepts from Economics	From Textbook		
Week 5	Flexible Electricity Demands in Smart Grids	From Textbook		
Week 6	Balancing Supply and Demand in the Regulated Industry and Electricity Markets	From Textbook		
Week 7	Ancillary Service Markets as a Means of Balancing Demand Deviations from Forecast in the Changing Industry	From Textbook		
Weeks 8, 9	Participating in Markets for Electric Energy	From Textbook		
Weeks 10, 11	Transmission Networks and Electricity Markets	From Textbook		
Week 12	Nodal Markets: LMP Fundamentals	From Textbook		
Weeks 13, 14	Financial Transmission Rights	From Textbook		
Week 15	Coordinating Variable Generation Through Flexible Demands	From Textbook		

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Explain fundamental principles of DC power flow, economic dispatch, and optimal power flow, illustrating their roles in modern electricity markets. [1L9K1]	15%	Midterm exam

Analyze the effects of flexible electricity demands and ancillary service markets on balancing supply and demand, especially under deviations from forecasted values. [1L9K2]	15%	Project, Final exam
Evaluate the structure of nodal markets, including locational marginal pricing (LMP) and financial transmission rights, to assess their impact on electricity prices and market efficiency. [1L9K1]	15%	Final exam
Design strategies for coordinating variable generation with flexible demands to improve stability and efficiency within the electricity grid. [1L9K1]	15%	
Demonstrate effective participation in electricity markets, showcasing knowledge of market dynamics, transmission network constraints, and regulatory considerations. [1L9K1]	15%	
Conduct in-depth research on a specific topic related to power system economics. [1L9C3, 1L9C4, 1L9C5, 1L9C6]	25%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	S07

Relationship to NQF Outcomes (Out of 100%)					
L9K1	L9K2	L9C3	L9C4	L9C5	L9C6
60	15	6.25	6.25	6.25	6.25

Evaluation		
Assessment Tool	Weight	
Midterm exam	25%	
Project	25%	
Final exam	50%	

Date Printed: 2024-11-07