

Jordan University of Science and Technology Faculty of Engineering Mechanical Engineering Department

ME321 Thermodynamic (1) - JNQF Level: 6

First Semester 2023-2024

Course Catalog

3 Credit Hours. Thermodynamics concepts and definitions, states, properties, systems, control volume, processes, cycles, units, tables of properties, work and heat, first law, internal energy and enthalpy, conservation of mass, steady? state and uniform state processes, second law, heat engines and refrigerators, reversible processes, entropy, principle of the increase of entropy, efficiencies, irreversibility and availability.

Text Book			
Title	Thermodynamics, an Engineering Approach		
Author(s)	Yunus A. Cengel, and Michael A. Boles		
Edition	10th Edition		
Short Name	Ref#1		
Other Information			

Instructor		
Name	Prof. Mohammad Alkam	
Office Location	-	
Office Hours	Sun : 10:00 - 11:00 Mon : 10:00 - 12:00 Tue : 11:30 - 13:30 Wed : 10:00 - 11:00	
Email	alkam@just.edu.jo	

Class Schedule & Room

Section 1: Lecture Time: Mon : 08:30 - 10:00 Room: M5125

Section 2: Lecture Time: Wed : 08:30 - 10:00 Room: M5125

Prerequisites				
Line Number	Course Name	Prerequisite Type		
921010	PHY101 General Physics (1)	Prerequisite / Study		
902030	MATH203 Ordinary Differential Equations	Prerequisite / Study		
911020	CHEM102 General Chemistry (2)	Prerequisite / Study		

Tentative List of Topics Covered				
Weeks	Торіс	References		
Weeks 1, 2	Introduction and Basic Concepts			
Weeks 3, 4	Energy, Energy Transfer, and General Energy Analysis			
Weeks 5, 6	Properties of Pure Substances			
Weeks 7, 8	Energy Analysis of Closed Systems			
Weeks 9, 10	Mass and Energy Analysis of Control Volumes			
Weeks 11, 12	The Second Law of Thermodynamics			
Weeks 13, 14, 15, 16	Entropy			

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Obtain thermodynamics properties using tables, charts and equations. [SO1] [1SO1] [1L6K1, 2L6K2]	20%	First exam, Final exam
Quantify forms of energy including heat and work that are involved in energy balance of a thermodynamic system. [SO1] [1SO1] [1L6K1, 1L6K2]	20%	First exam, Final exam
Apply the first law of thermodynamics on closed and open systems to model a thermodynamic system. [SO1] [1SO1] [1L6K1, 1L6K2]	20%	Second exam, Final exam
Apply the second law of thermodynamics to model heat engines, heat pumps and refrigeration cycles. [SO1] [1SO1] [1L6K1, 1L6K2]	20%	Final exam

Apply entropy analysis to balance entropy of thermodynamics systems. [SO1]	20%	Final exam
[1SO1] [1L6K1, 1L6K2]		

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	S07
100						

Relationship to NQF Outcomes (Out of 100%)			
L6K1	L6K2		
46.67	53.33		

Evaluation			
Assessment Tool	Weight		
First exam	30%		
Second exam	30%		
Final exam	40%		

Date Printed: 2023-11-23