

Jordan University of Science and Technology Faculty of Engineering Mechanical Engineering Department

ME322 Thermodynamics (2) - JNQF Level: 7

Second Semester 2023-2024

Course Catalog

3 Credit Hours. Availability and Irreversibility. Vapor and air-standard power and refrigeration cycles. Thermodynamic relations. Ideal and real mixtures and solutions. Chemical reactions and combustion.

Teaching Method: On Campus

Text Book			
Title	Fundamentals of Classical Thermodynamics		
Author(s)	Sonntag, R.E., Borgnake, C. and Van Wylen, G.J.		
Edition	6th Edition		
Short Name	Ref #1		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref #2	Fundamentals of Engineering Thermodynamics	Michael J. Moran, Howard N. Shapiro	7th Edition	

Instructor		
Name	Prof. Osamah Haddad	
Office Location	M5 L3	
Office Hours		
Email	haddad@just.edu.jo	

Class Schedule & Room

Section 2: Lecture Time: Mon, Wed : 10:00 - 11:30 Room: M5127

Section 3: Lecture Time: Mon, Wed : 13:00 - 14:30 Room: M5127

Prerequisites				
Line Number	Course Name	Prerequisite Type		
253214	ME321 Thermodynamic (1)	Prerequisite / Pass		

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	1-Introduction		
Weeks 1, 2, 3	2- Exergy		
Weeks 4, 5	3- Gas power cycles		
Weeks 6, 7	4- Vapor and combined power cycles		
Weeks 8, 9	5- Refrigeration cycles		
Weeks 10, 11	6- Thermodynamic property relations		
Weeks 11, 12, 13	7- Gas mixtures		
Weeks 13, 14	8- Gas-vapor mixtures and air-conditioning		
Weeks 15, 16	9- Chemical reactions		

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Perform exergy analysis of Thermodynamic processes. [1SO1] [1L7S1]	15%	
Analyze various gas power cycles. [1SO1] [2L7S1]	25%	
Analyze steam power cycles. [1SO1] [2L7S1]	15%	
Analyze refrigeration cycles. [1SO1] [2L7S1]	15%	
Determine the properties of non-reacting mixtures and use the psychrometric chart to compute properties in air-water vapor mixtures, and to analyze basic air-conditioning processes. [1SO1] [2L7S2]	20%	
Estimate the Stoichiometric air required for combustion and perform energy analysis of combustion processes. [1SO1] [2L7S1]	10%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	SO7
100						

Relationship to NQF Outcomes (Out of 100%)			
L7S1	L7S2		
80	20		

Evaluation			
Assessment Tool	Weight		
First Exam	30%		
Second Exam	30%		
Final Exam.	40%		

Date Printed: 2024-02-13