

Jordan University of Science and Technology Faculty of Engineering

Mechanical Engineering Department

ME445 Thermo Fluids Lab

Summer Semester 2022-2023

Course Catalog

1 Credit Hours. Experiments on thermo-fluid systems including: pipe flows, flow meters, hydrostatic forces, pump performance, jet forces, thermal conductivity, heat transfer coefficients, heat exchanger performance, air-conditioning processes, refrigeration cycles, boiling and condensation, and steam devices.. (1.0 Cr.)

Instructor				
Name	Prof. SAUD KHASHAN			
Office Location	-			
Office Hours				
Email	sakhashan@just.edu.jo			

Class Schedule & Room

Section 3:

Lecture Time: Sun, Tue: 14:00 - 17:00

Room: LAB

Prerequisites					
Line Number	Prerequisite Type				
253431	ME343 Fluid Mechanics	Prerequisite / Study			
253220	ME322 Thermodynamics (2)	Prerequisite / Study			

Tentative List of Topics Covered					
Weeks	Weeks Topic References				
Week 1	Flow measuring				
Week 2	Center of pressure				
Week 3	Impact of jet				

Week 4	Pipe flow						
Week 5	Centrifugal pump performance curves						
Week 6	Pump parallel and series						
Week 7	Thermal conductivity						
Week 8	Cross flow heat exchanger						
Week 9	Air conditioning unit						
Week 10	Refrigeration cycle						
Week 11	Boling and condensation						
Week 12	Heat exchanger						
Week 13	steam bench						

Mapping of Course Outcomes to Program Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
an ability to develop and conduct appropriate experimentation related to thermos- fluid systems, analyze and interpret data, and use engineering judgment to draw conclusions. [1SLO6]	65%	
an ability to communicate effectively by technical reports [1SLO3]	10%	
an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics [1SLO1]	25%	

	Relationship to Program Student Outcomes (Out of 100%)																
Α	В	С	D	Е	F	G	Н	I	J	K	SLO1	SLO2	SLO3	SLO4	SLO5	SLO6	SLO7
											25		10			65	

Evaluation					
Assessment Tool	Weight				
Midterm	30%				
Reports	30%				
Final	40%				

Policy	
--------	--

Each experimental activity must be reported in a written report	Structure of the report 1- abstract (5 marks) 2- introduction (10 marks) 3- theory (10 marks) 4- apparatus and procedure (10 marks) 5- data and calculation (40 marks) 6- tables and figures (10 marks) 7- discussion (10 marks)
	6- tables and figures (10 marks) 7- discussion (10 marks)
	8- conclusion (5 marks)

Date Printed: 2023-09-18