

Jordan University of Science and Technology Faculty of Engineering Mechanical Engineering Department

ME451 Heat Transfer - JNQF Level: 7

First Semester 2023-2024

Course Catalog

3 Credit Hours. Modes of heat transfer, Steady heat conduction, Thermal resistance method, Transient heat conduction, Convection and Radiation heat transfer, Heat balance method, Heat transfer correlations, Heat exchangers.

Text Book			
Title	Heat Transfer: A practical Approach		
Author(s)	Y. Cengel,		
Edition	5th Edition		
Short Name	Cengel,		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Incropera and D.P. DeWitt	Fundamentals of Heat and Mass Transfer	Incropera and D.P. DeWitt	6th Edition	
Incropera et al.	Principles of Heat and Mass Transfer,.	F. Incropera, D. DeWitt, T. L. Bergman and A. S. Lavine	7th Edition	
Arpaci, et al.	Introduction to Heat Transfer,	V. Arpaci, S. Kao and A. Selamet.	1st Edition	

Instructor			
Name	Prof. SAUD KHASHAN		
Office Location	-		

Office Hours	Sun : 10:30 - 12:00 Mon : 13:00 - 14:30
	Tue : 11:00 - 12:30 Thu : 12:00 - 13:30
Email	sakhashan@just.edu.jo

Class Schedule & Room

Section 2: Lecture Time: Mon, Wed : 11:30 - 13:00 Room: M2006

Prerequisites			
Line Number	Course Name	Prerequisite Type	
253431	ME343 Fluid Mechanics	Prerequisite / Study	
253220	ME322 Thermodynamics (2)	Prerequisite / Study	
253053	ME305 Applied Math For Engineers	Prerequisite / Study	

Tentative List of Topics Covered				
Weeks	Торіс	References		
Week 1	Modes of heat transfer	chapter 1 From Cengel,, chapter 1 From Incropera and D.P. DeWitt		
Weeks 2, 3	Heat Conduction Equation	Chapter 2 From Cengel,, Chapter 2 From Incropera and D.P. DeWitt		
Weeks 3, 4, 5	Steady state conduction	Chapter 3 From Cengel,, Chapter 3 From Incropera and D.P. DeWitt		
Weeks 5, 6	Transient one dimensional conduction.	Chapter 4 From Cengel		
Week 6	Introduction to convection transfer	Chapter 6 From Cengel		
Weeks 7, 8	External flow forced convection	Chapter 7 From Cengel		
Weeks 8, 9	Internal flow forced convection.	Chapter 8 From Cengel		
Week 10	Free convection	Chapter 9 From Cengel		
Weeks 11, 12	Heat exchangers	Chapter 11 From Cengel		
Weeks 13, 14	10. Fundentals of thermal radiations and Radiative heat transfer.	Chapter 12 and 13 From Cengel		

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Apply conservation principles and fundamental heat transfer theories (conduction, convection, radiation) to analyze thermal behavior in various engineering scenarios, including steady-state and transient heat conduction and heat transfer in fluids. [1SO1] [1L7S1]	30%	First Exam
solve heat transfer problems involving forced and free convection. [1SO1] [1L7S2]	40%	Exam2, Final, HW
solve complex heat transfer problems involving the modeling and analysis of heat exchangers. [1SO1] [1L7S2]	15%	Final, HW
solve heat transfer problems involving radiative heat transfer between surfaces	15%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	SO7
85						

Relationship to NQF Outcomes (Out of 100%)			
L7S1 L7S2			
30	55		

Evaluation			
Assessment Tool	Weight		
First Exam	25%		
Exam2	25%		
Final	40%		
HW	10%		

Date Printed: 2024-02-08