

Jordan University of Science and Technology Faculty of Engineering Mechanical Engineering Department

ME527 Automotive System - JNQF Level: 7

First Semester 2023-2024

Course Catalog

3 Credit Hours. Engine cycles, gas-exchange processes, fuel metering, ignition, combustion and emissions, turbocharging, and overall performance. Electrics and electronics, control and instrumentation, sensors and actuators. Electronic engine and vehicle control, Electric and hybrid vehicles.

	Text Book				
Title	Title Internal Combustion Engines				
Author(s)	Colin R. Ferguson and Allan T. Krkpatrick, 2001				
Edition	2nd Edition				
Short Name	Text Book				
Other Information					

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#1	Internal Combustion Engine Fundamentals,	J.B. Heywood	1st Edition	
Ref#2	An Introduction to Combustion	Stephen R. Turns.	2nd Edition	
Ref#3	Electric and Hybrid Vehicles VEHICLE POWERTRAIN SYSTEMS	Behrooz Mashadi and David Crolla	1st Edition	John Wiley & Sons, Ltd

Instructor		
Name	Prof. Ghassan Tashtoush	
Office Location	M5 L2	

Office Hours	Sun : 11:30 - 12:30 Mon : 12:00 - 14:00 Tue : 11:30 - 12:30 Thu : 09:30 - 10:30 Thu : 11:30 - 12:30
Email	gtash@just.edu.jo

Class Schedule & Room

Section 1:

Lecture Time: Sun, Tue : 12:30 - 13:30 Room: M5126

Prerequisites				
Line Number	Prerequisite Type			
253220	ME322 Thermodynamics (2)	Prerequisite / Study		

Tentative List of Topics Covered				
Weeks	Weeks Topic			
Week 1	The different types of internal combustion engines and the parameters that define engine performance	From Text Book		
Week 2	Thermodynamic analysis of engine cycles Fro			
Week 3	Gas exchange processes in four-stroke and two-stroke cycle engines	From Text Book		
Week 4	Spark-ignition (SI) engine combustion, emissions formation and control			
Week 5	Diesel engine combustion, emissions formation and control	From Text Book		
Week 6	Engine fuels metering and requirements	From Text Book		
Week 7	Turbo-charging and overall Engine operating characteristics and performance	From Text Book , From Ref#1		
Weeks 8, 9, 10	Electrics and electronics, engine and vehicle control and instrumentation, sensors and actuators.	From Ref#1		
Weeks 11, 12, 13	Hybrid engines and Electric vehicle	From Ref#3		
Weeks 14, 15	Fuel cell and hydrogen engines	From Ref#3		

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Formulate and solve engineering tasks related to the most representative automotive systems using the thermodynamics principles [20SO1, 10SO2, 10SO6] [10L7K1, 10L7S1, 10L7S3, 10L7C1]	40%	First Exam, Assignments and Quizes, Course Project, Final Exam
Employ a range of skills and techniques focused on the implementation of solutions for different engineering problems in the field of the propulsion systems of automotive vehicles. [10SO1, 10SO4, 10SO6, 10SO7] [10L7S1, 15L7C2, 15L7C4]	40%	First Exam, Assignments and Quizes, Course Project, Final Exam
Develop a broad range of students? skills and knowledge to be able to understand, recognize, and solve complex issues in vehicle propulsion system as a part of the challenging automotive industry. [5SO1, 5SO2, 5SO4, 5SO7] [10L7S1, 5L7C2, 5L7C4]	20%	First Exam, Course Project, Final Exam

Relationship to Program Student Outcomes (Out of 100%)						
SO1 SO2 SO3 SO4 SO5 SO6 SO7						
35	15		15		20	15

Relationship to NQF Outcomes (Out of 100%)					
L7K1 L7S1 L7S3 L7C1 L7C2 L7C4					
10	30	10	10	20	20

Evaluation			
Assessment Tool	Weight		
First Exam	25%		
Assignments and Quizes	10%		
Course Project	25%		
Final Exam	40%		

Policy		
Course Evaluation Policy	Assignments, Quizzes 10% Experiment 0% 1st Exam 25% project 25% Final Exam 40%	

University Policy	 Attendance is mandatory. Any student who misses 20% of the class will be barred from class. Late student will be considered absent. No cell phones are allowed during class. All cell phones should be turned OFF during exams.
-------------------	--

Date Printed: 2023-11-27