

Jordan University of Science and Technology Faculty of Engineering Mechanical Engineering Department

ME541 Fluid Power Control - JNQF Level: 7

Second Semester 2023-2024

Course Catalog

3 Credit Hours. 3 Credit Hours. Introducing the concept of Fluid Power Control and how it compares to other power systems. Fluid properties, mechanics and governing laws. Pumps, actuators and physical phenomenon related to them. Discussion of valves. Exposing the students to fundamentals and specific cases of control valves such as Direction, Pressure and Flow control valves. Emphasizing on the design and control of hydraulic and pneumatic circuits

Teaching Method: On Campus

Text Book					
Title	Title Fluid Power Engineering by				
Author(s)	M. Galal Rabie, The McGraw-Hill Companies				
Edition	7th Edition				
Short Name	Ref #1				
Other Information	Class Notes				

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#2	Fluid Power with applications	Anthony Esposito	4th Edition	
Ref#3	Fluid Power Control	Blackburn,J. F.,G.Reethof, and J. L. Shearer	1st Edition	
Ref #4	Oil Hydraulic Power and its Industrial Applications	Ernst, W.	1st Edition	

Instructor			
Name Prof. Ghassan Tashtoush			
Office Location	M5 L2		

Office Hours	
Email	gtash@just.edu.jo

Class Schedule & Room

Section 1:

Lecture Time: Mon, Wed: 13:00 - 14:30

Room: C2006

Prerequisites					
Line Number	Prerequisite Type				
254621	ME462 Automatic Control	Prerequisite / Study			
253431	ME343 Fluid Mechanics	Prerequisite / Study			

Tentative List of Topics Covered					
Weeks	Topic	References			
Week 1	Introduction to hydraulics and pneumatics	From Ref #1			
Week 2	Fluids for hydraulic systems	From Ref #1			
Week 3	Distribution systems and their components	From Ref #1			
Weeks 4, 5, 6	Pumps, classifications and properties	From Ref #1			
Weeks 7, 8	Actuators	From Ref #1			
Weeks 9, 10, 11	Valves	From Ref #1			
Week 12	Circuits analysis and design	From Ref #1			
Weeks 13, 14, 15	Pneumatic systems	From Ref #1			
Week 16	Fluid logic control systems	From Ref #1			

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Demonstrate a good understanding of the basic components of hydraulic systems, and the ability to choose appropriate fluids and distribution components based on desired application [2SO1, 1SO7] [1L7K1]	20%	
Describe the different designs of hydraulic pumps and their displacement correlations and perform calculations that involves volumetric and mechanical efficiencies of hydraulic pumps [1SO1, 1SO7] [1L7S1, 1L7S2]	14%	
Describe the different designs of hydraulic actuators and their displacement correlations and perform calculations that involves volumetric and mechanical efficiencies of hydraulic actuators [1SO1, 1SO7] [1L7C1, 1L7C2]	13%	

Demonstrate a good understanding of the working principles of directional control valves, pressure control valves and flow control valves and perform basic analysis and design of hydraulic circuits [1SO1, 1SO2, 1SO7] [1L7S3, 1L7C1]	33%	
Demonstrate a good understanding of the basic components of pneumatic systems and perform basic analysis and design of pneumatic circuits [1SO1, 1SO2, 1SO7] [1L7C4]	12%	
Demonstrate a good understanding of fluid logic control and their components in a fluid power system [1SO1, 1SO7] [1L7C4]	8%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1 SO2 SO3 SO4 SO5 SO6 SO7						SO7
45.83 15 39.17						

Relationship to NQF Outcomes (Out of 100%)							
L7K1	L7S1	L7S2	L7S3	L7C1	L7C2	L7C4	
20 7 7 16.5 23 6.5 20							

Evaluation			
Assessment Tool	Weight		
First Exam	30%		
Second Exam	30%		
Final examination	40%		

Date Printed: 2024-02-26