

Jordan University of Science and Technology Faculty of Engineering Mechanical Engineering Department

ME701 Advanced Applied Mathematics - JNQF Level: 9

First Semester 2023-2024

Course Catalog

3 Credit Hours. Catalog Data: (3 Cr. Hr.) The course covers vector and tensor calculus. Topics: Ordinary differential equations. Laplace and Fourier Transforms. Sturm-Liouville problems. Partial differential equations. Applications to structural analysis, fluid mechanics, and dynamical systems Topics covered:

	Text Book				
Title Applied Engineering Mathematics					
Author(s)	I. Kreyzik				
Edition	11th Edition				
Short Name	Applied math				
Other Information					

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref2	Elliptic Partial Differential Equations of Second Order,	David Gilbarg, Neil S. Trudinge	1st Edition	

Instructor		
Name Prof. Bourhan Taschtouch		
Office Location	M5 L2	
Office Hours	Sun : 09:00 - 11:00 Mon : 10:00 - 11:00 Tue : 09:00 - 11:00 Wed : 10:00 - 12:00	
Email	bourhan@just.edu.jo	

Class Schedule & Room

Section 1: Lecture Time: Sun : 11:30 - 14:30 Room: LAB

Tentative List of Topics Covered				
Weeks	Торіс	References		
Weeks 1, 2	Introduction: definitions, review of ODE 2.			
Weeks 3, 4	Power series method and Bessel function			
Weeks 5, 6	Systems of linear differential equations			
Weeks 7, 8	Laplace transformation and Fourier series			
Weeks 9, 10	Fourier Integrals			
Weeks 11, 12	Partial differential equations and their solutions			
Weeks 13, 14, 15	Solution of PDE using Laplace			

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Develop the ability to formulate and solve ordinary differential equations (ODEs) in the context of engineering applications through critical analysis and practical application. [1L9K1, 1L9K2]	30%	
Demonstrate mastery in solving complex engineering problems utilizing power series, Bessel functions, Laplace transformation, Fourier series, and Fourier integrals. [1L9K1, 1L9S2]	40%	
solve partial differential equations (PDEs) and apply Laplace transformations for efficient solutions, showcasing proficiency in addressing multi-dimensional engineering challenges. [1L9S1, 1L9S2]	40%	

	Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO1 SO2 SO3 SO4 SO5 SO6 SO7						

Relationship to NQF Outcomes (Out of 100%)						
L9K1	L9K2	L9S1	L9S2			
35 15 20 40						

Evaluation		
Assessment Tool		Weight

first exam	25%
Second exam	25%
Final exam	50%

Date Printed: 2024-02-06