

Jordan University of Science and Technology Faculty of Engineering Biomedical Engineering Department

BME321 Biomedical Signals And Systems

Summer Semester 2019-2020

Course Catalog

3 Credit Hours. Concepts of linear time invariant systems; discrete and continuous time systems; application of Laplace and Fourier transforms to linear systems; Z-transform; system function; frequency response and simulation in the frequency domain; discrete Fourier series and fast Fourier transform; computer applications.

Text Book								
Title	Signals and Systems							
Author(s)	Oppenheim, A.V., Willsky, A.S. and Young, I.A							
Edition	2nd Edition							
Short Name	Ref#1							
Other Information								

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#2	Biomedical Signal Processing and Signal Modeling	Bruce, E.N.	2nd Edition	

	Instructor						
Name	Dr. Khaldon Lweesy						
Office Location	C5 L2						
Office Hours							
Email	klweesy@just.edu.jo						

Class Schedule & Room

Section 1:

Lecture Time: Sun, Mon, Tue, Wed: 14:30 - 16:00

منصة الكترونية :Room

Prerequisites								
Line Number	Line Number Course Name							
282040	BME204 Introduction To Linear Systems	Prerequisite / Study						

Tentative List of Topics Covered						
Week	Topic Topic	References				

Week 1	Introduction: Modeling, CT and DT physical systems, Matlab	
Week 2	Continuous Time (CT) Signals and Systems: Transformations, Signal Characteristics, Special functions, Functions, CT systems, Properties of CT times.	
Weeks 3,4	CT Linear Time Invariant Systems: Impulse representation of CT Signals, Convolution and its properties, Differential equation models, Natural systems. System response for complex-exponential inputs.	
Weeks 5, 6	Fourier Series: Periodic functions, Fourier series, Fourier Coefficients, Frequency Spectra, Properties of Fourier Series, System analysis.	
Weeks 7, 8	The Fourier Transform: Definition, Properties, Fourier Transform of Time Functions, Sampling, Applications, Energy and power spectra.	
Weeks 9, 10	The Laplace Transform: Definitions, Examples, Properties, Response of LTI Systems and Its characteristics	
Weeks 11, 12	Discrete ? Time Signals and Systems	
Week 13	DT linear invariant systems	
Week 14	Fourier Transform of DT Signals Definition and properties	
Weeks 15, 16	The Z-Transform: Definition and properties	

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Understand the linear system theory [1A, 1B, 1C, 1E, 1I, 1K, 1L, 1M]	12%	
Understand the basic properties of signals and systems [1A, 1B, 1C, 1E, 1I, 1K, 1L, 1M]	12%	
Understand the modeling of signals in different domain [1A, 1B, 1C, 1E, 1I, 1K, 1L, 1M]	12%	
Understand the frequency domain analysis [1A, 1B, 1C, 1E, 1I, 1K, 1L, 1M]	12%	
Learn how to discretize medical signals and understand the discrete time systems [1A, 1B, 1C, 1E, 1I, 1K, 1L, 1M]	12%	
Apply the above principles is processing biomedical signals [1A, 1B, 1C, 1E, 1I, 1K, 1L, 1M]	12%	
Learn How to use Data acquisition to record signals [1A, 1B, 1C, 1E, 1I, 1K, 1L, 1M]	12%	
Learn How to use Matlab to show Bio signals [1A, 1B, 1C, 1E, 1G, 1I, 1K, 1L, 1M]	16%	

	Relationship to Program Student Outcomes (Out of 100%)																		
Α	В	С	D	E	F	G	Н	- 1	J	К	L	М	SLO1	SLO2	SLO3	SLO4	SLO5	SLO6	SLO7
12.28	12.28	12.28		12.28		1.78		12.28		12.28	12.28	12.28							

Evaluation								
Assessment Tool	Weight							
First Exam	25%							
Second Exam	25%							
Homeworks and Quizzes	10%							
Final Exam	40%							

Date Printed: 2020-09-24