

Jordan University of Science and Technology Faculty of Engineering Biomedical Engineering Department

BME431 Physiological Modeling And Control Systems - JNQF Level: 6

First Semester 2023-2024

Course Catalog

3 Credit Hours. Design of system elements, case studies of physiological system examples, design of subsystems, Dynamic modeling and control of selected biological and physiological processes. Lumped / distributed/ compartmental models, particular and complementary solution, analytical and numerical solutions, Respiratory/ Cardiovascular/Muscular / gas exchange/ transport Modeling, transient response, Laplace, time and frequency responses and analysis, open and closed-loop systems, negative feedback, Forward feedback, impulse and step response of physiological control systems and transfer function, state-space design and control.

Text Book				
Title	Mathematical and Computer Modeling of physiological systems			
Author(s)	Vincent C.Rideout			
Edition	1st Edition			
Short Name	REF1			
Other Information	Textbook1			

Course References

Short name	Book name	Author(s)	Edition	Other Information
REF2	Physiological Control Systems - Analysis, Simulation, and Estimation	Michael C.K Khoo	1st Edition	Textbook2

Instructor			
Name	Prof. ENAS ABDUL HAY		
Office Location	C5 L1		
Office Hours	Sun : 12:45 - 13:30 Mon : 11:30 - 14:30 Tue : 12:00 - 12:15 Wed : 11:30 - 13:30		

Email

Class Schedule & Room

Section 1:

Lecture Time: Mon, Wed : 10:00 - 11:30 Room: E2010

Prerequisites				
Line Number	Course Name	Prerequisite Type		
282300	BME230 Tools For Biomedical Engineers	Prerequisite / Study		
283212	BME321 Biomedical Signals And Systems	Prerequisite / Pass		

Tentative List of Topics Covered						
Weeks	Торіс	References				
Weeks 1, 2	Mathematical Modeling					
Weeks 3, 4	Static analysis of physiological systems					
Week 5	First Exam					
Weeks 6, 7	Dynamic analysis of physiological systems					
Weeks 8, 9	Cardiovascular modeling					
Week 10	Second Exam					
Weeks 11, 12	Respiratory system modeling					
Weeks 13, 14	Mass Transport :Compartment Modeling					
Week 15	Multiple Modeling					
Week 16	Final Exam					

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
To provide the students with a guide to mathematical modeling techniques [1,2]: -Learn how to describe systems using Laplace transform and differential equations -Solving the mathematical models using different numerical and analytical methodUnderstand state-space and transfer function -Understand linear and nonlinear, lumped and distributed models -Understand generalized models [50SO1, 50SO2] [17L6K1, 17L6K2, 17L6S1, 16L6S2, 16L6C1, 17L6C4]	34%	

Understand how to build, analyze and develop models for physiological systems [1,2,8,7,9]: - Develop and build engineering models that describe pressure flow systems such as cardiovascular and respiratory function -Develop and build engineering models that describe chemical ventilation, Glucose balance, muscle reflex. [34SO1, 33SO2, 33SO7] [34L6S1, 33L6S2, 33L6C4]	33%	
Understand the simulation and control of selected physiological processes and biological systems [1,2,5,8]: -Simulate Respiratory, cardiovascular systems and Mass-Transport compartment modeling -Understand control systems (types, feedback, stability, transient and steady state, Impulse and step responses) [45SO1, 45SO2, 10SO5] [20L6K1, 20L6S1, 20L6S2, 20L6C1, 20L6C4]	33%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1 SO2 SO3 SO4 SO5 SO6 SO7						
43.07	42.74			3.3		10.89

Relationship to NQF Outcomes (Out of 100%)							
L6K1 L6K2 L6S1 L6S2 L6C1 L6C4							
12.38 5.78 23.6 22.93 12.04 23.27							

Date Printed: 2023-12-01