

Jordan University of Science and Technology Faculty of Engineering Biomedical Engineering Department

BME433 Physiological Modeling And Control Systems Lab - JNQF Level: 6

First Semester 2023-2024

Course Catalog

1 Credit Hours. A lab providing modeling and analysis computerized tools for the study of physiological control systems. The lab is an active learning environment to reinforce selected engineering principles of physiology, emphasizing a quantitative model-oriented approach. Topics include: Systems and modeling, linear systems analysis and Control systems design.

Text Book					
Title	Lab tutorial.				
Author(s)	Enas Abdulhay				
Edition	1st Edition				
Short Name	REF1				
Other Information					

Instructor				
Name	Prof. ENAS ABDUL HAY			
Office Location	C5 L1			
Office Hours	Sun : 12:45 - 13:30 Mon : 11:30 - 14:30 Tue : 12:00 - 12:15 Wed : 11:30 - 13:30			
Email	ewabdulhay@just.edu.jo			

Class Schedule & Room

Section 1: Lecture Time: Sun : 14:30 - 17:30 Room: LAB

Section 2: Lecture Time: Mon : 14:30 - 17:30 Room: LAB

Section 3: Lecture Time: Mon : 11:30 - 14:30 Room: LAB

Section 4: Lecture Time: Thu : 13:30 - 16:30 Room: LAB

Prerequisites					
Line Number Course Name Prerequisite Type					
282300	BME230 Tools For Biomedical Engineers	Prerequisite / Study			
284310	BME431 Physiological Modeling And Control Systems	Pre./Con.			

Tentative List of Topics Covered						
Weeks	Торіс	References				
Week 1	Syllabus					
Week 2	Introduction					
Week 3	Introduction to the modeling tools of Berkeley Madonna and SIMULINK					
Week 4	Respiratory mechanics simulation (Part 1: Breathing Pattern Generator)					
Week 5	Respiratory mechanics simulation (Part 2: Artificial Mechanical Ventilation)					
Week 6	Respiratory mechanics simulation (Part 3: Respiratory pathology)					
Week 7	Cardiovascular mechanics simulation (Part 1: Cardiac wave generator)					
Week 8	Free lab (Revision)					
Week 9	MID Exam					
Week 10	Cardiovascular mechanics simulation (Part 2: Cardiopulmonary interactions)					
Week 11	Model of Glucose/Insulin balance					
Week 12	Steady state and dynamic analysis					
Week 13	State-Space model (Blood doping)					

Week 14	Free lab (Revision)	
Week 15	Final Exam	

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Appreciate the role of physiological Modeling. [4,9]: 1.1- Recognize the different goals of physiological modeling. 1.2- Appreciate the role of physiological and human ? machine models in medicine, industry and marketing. 1.3- Understand the basic strengths and limitations of quantitative modeling. 1.4- Appreciate the dynamic nature of the models. [50SO2, 50SO4] [1L6K1, 1L6K2, 1L6C4, 1L6C5]	15%	
To integrate previously learned concepts into a rigorous investigation of the quantitative foundations of physiology.(1,7, 2,4,6,8): 2.1- Read, understand, and apply knowledge gained from scientific literature in math, physical science, biology, physiology, computer science, electric networks, and engineering. 2.2- Make explicit mathematical, electrical and mechanical engineering connections among previously learned course materials. 2.3-Explicitly show that many of the underlying physiological concepts actually stem from similar engineering and mathematical ideas. [20SO1, 20SO2, 20SO4, 20SO6, 20SO7] [1L6K1, 1L6K2, 1L6S3, 1L6C3, 1L6C4, 1L6C5]	15%	
To understand complex physiological systems by design and model-oriented explorations. (1,6,2,5,8,9): 3.1- Spans multiple systems from sensory to neural to muscular, and from one system to the next as well as comprehend inter-connections. 3.2 ? Represent a physiological component by another non-physiological one. 3.3 ? Manipulate the physiological parameters and analyse the corresponding results by curve fitting and sensitivity analysis. 3.4- Design physiological systems and conduct computerized model-oriented experiments. [25SO1, 25SO2, 25SO5, 25SO6] [1L6S1, 1L6S3, 1L6C1, 1L6C3, 1L6C4, 1L6C5]	14%	
Apply computerized simulation tools using an instruction manual. (1,2,6,8): 4.1- Master SIMULINK applications of physiological simulation. 4.2- Master Berkeley Madonna applications of physiological simulation. [34SO1, 33SO2, 33SO6] [1L6S1, 1L6S2, 1L6S3, 1L6C1, 1L6C2]	14%	
Understand the variety in the utilities of the simulation tools. (1,2,6,8): 5.1 - Understand the block diagram concept of SIMULINK and blocks interactions (graphical interface). 5.2- Understand the linear programing concept of Berkeley Madonna and subcodes interactions. [34SO1, 33SO2, 33SO6] [1L6S3, 1L6C1, 1L6C2, 1L6C3]	14%	
To encourage a more practical approach rather than a purely didactic approach.(1,2,6,8): 6.1 - Observe and understand how differential equations move through time so that the equations are transformed from their abstract mathematical form to a more concrete engineering form. 6.2 - Observe and understand physiological outputs of computerized linear analysis in time and Laplace domain. 6.3- Observe and understand effect of parameters and initial conditions values on physiological systems and transfer functions. 6.4- Observe and understand effect of physiological feedback. [34SO1, 33SO2, 34SO6] [1L6S1, 1L6S2, 1L6S3, 1L6C1, 1L6C2, 1L6C3]	14%	

To build the numerical skills for evaluating existing biological models and developing new models based on experimental and computational experiment. (1,6,8,9): 7.1- Use the programmed integrators methods in SIMULINK and Berkelry Madonna such as RK2, RK4 and stiff and analyse the results. 7.2- Predict physiological output and identify parameters based on computerised batch runs. 7.3- Process, plot and manipulate vectors of physiological variables by MATLAB, SIMULINK and Berkeley Madonna. 7.4- Apply	14%	
computerized numerical analysis of steady-state and dynamical behavior. [50SO1, 50SO6] [1L6K1, 1L6S1, 1L6S3, 1L6C2, 1L6C3, 1L6C4, 1L6C5]		

Relationship to Program Student Outcomes (Out of 100%)									
SO1 SO2 SO3 SO4 SO5 SO6 SO7									
27.73	27.81		10.5	3.5	27.45	3			

Relationship to NQF Outcomes (Out of 100%)									
L6K1 L6K2 L6S1 L6S2 L6S3 L6C1 L6C2 L6C3 L6C4 L6C5									L6C5
8.25	6.25	9.47	5.13	15.47	10.97	10.63	12.67	10.58	10.58

Date Printed: 2023-12-01