

Jordan University of Science and Technology Faculty of Engineering Biomedical Engineering Department

BME441 Biomedical Transport Phenomenon

First Semester 2023-2024

Course Catalog

3 Credit Hours. 3 Credit hours (3 h lectures).Principles of momentum, heat, and mass transfer with applications to medical and biological systems and medical device design

Text Book			
Title	Transport Phenomena in Biological Systems		
Author(s)	George Truskey, Fan Yuan, and David Katz		
Edition	2nd Edition		
Short Name	ТҮК		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref #2	Biotransport: Principles and Applications	Kenneth R. Diller and Robert J. Roselli	11th Edition	

Instructor			
Name	Dr. Hossam H El-Khalil		
Office Location	-		
Office Hours	Sun : 13:00 - 13:30 Mon : 11:00 - 11:30 Tue : 11:00 - 14:00 Wed : 11:00 - 13:00		
Email	hmhelkhalil@just.edu.jo		

Class Schedule & Room

Section 1: Lecture Time: Mon, Wed : 13:00 - 14:30 Room: E2010

Prerequisites			
Line Number	Course Name	Prerequisite Type	
283440	BME344 Thermodynamics	Prerequisite / Study	
102364	MED236A Physioanatomy	Prerequisite / Study	
283420	BME342 Bio Fluid Mechanics	Prerequisite / Pass	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Introduction		
Week 2	Conservation Relations and Fluid Mechanics	From TYK	
Weeks 3, 4, 5, 6	Diffusive Mass Transport and Relation to Convection	From TYK	
Week 7	Trans-vascular Transport & Blood Oxygenator	From TYK	
Week 8	Heat Transfer	From TYK	
Weeks 9, 10	Fluid Dynamics and Momentum Balance	From TYK	
Weeks 11, 12	Applications and Models	From TYK	
Weeks 13, 14	Numerical and Computational Methods	From TYK	

Mapping of Course Outcomes to Program Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Set up shell balances for conservation of momentum, energy, and mass [25SO1]	25%	
Understand and apply flux laws in balances [20SO1]	20%	
Employ shell balance equations to obtain desired concentration profile [25SO1]	25%	
Utilize information obtained from solutions of the balance equations to obtain engineering quantities of interest [15SO1, 5SO6]	20%	
Appreciate relevance of transport principles in diverse applications [5SO2, 5SO6]	10%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	SO7
85	5				10	

Evaluation			
Assessment Tool	Weight		
First Exam	20%		
Second Exam	20%		
Project	5%		
Quizzes and Homeworks	15%		
Final Exam	40%		

Date Printed: 2023-12-14