

Jordan University of Science and Technology Faculty of Engineering Biomedical Engineering Department

BME462 Microcontrollers And Embedded Systems

Second Semester 2022-2023

Course Catalog

3 Credit Hours. 3 Credit hours (3 h lectures). Introduction to Microcontroller based systems; architecture, hardware fundamentals, basic programming using Arduino environment, sensor and output interface, specialized digital communication, with biomedical engineering applications.

Text Book										
Title	Introduction to Embedded Systems: Using ANSIC and the Arduino Development Env.									
Author(s)	David Russell									
Edition	1st Edition									
Short Name	Ref #1									
Other Information										

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref #2	Arduino Cookbook	Michael Margolis	2nd Edition	

Instructor										
Name	Dr. Yazan Al Dweiri									
Office Location	C5 L2									
Office Hours	Sun : 11:30 - 13:00 Tue : 13:30 - 14:30 Wed : 14:00 - 15:30 Thu : 08:00 - 10:00									
Email	ymaldweiri@just.edu.jo									

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue, Thu : 10:30 - 11:30 Room: M2011

Prerequisites										
Line Number	Course Name	Prerequisite Type								
282300	BME230 Tools For Biomedical Engineers	Prerequisite / Study								
284211	BME421 Digital Signal Processing	Prerequisite / Study								
283140	BME314 Medical Electronics li	Prerequisite / Study								

Tentative List of Topics Covered										
Weeks	Торіс	References								
Week 1	Discuss Syllabus and Course Structure, and basic concepts of embedded systems									
Week 2	Introduction to computer architecture, digital numbering systems and digital logic gates									
Week 3	Digital Logic Gates									
Week 4	Digital control, ALU & RAM									
Week 5	System-level Instructions									
Week 6	Introduction to Arduino compatible boards and working with digital Inputs/Outputs									
Week 7	Analog Inputs and A/D basics and LCD & user-defined functions									
Week 8	Driving high-current devices and system calibration and distance measurements									
Week 9	Working with biopotentials									
Week 10	Sampling frequency and processing optimization for RT systems									
Week 11	Real-time signal processing and FIR system implementation									
Week 12	Digital communication protocols: I2C and SPI and datalogging and wireless connectivity									
Week 13	Biomedical Engineering applications									
Week 14	Projects Week									

Mapping of Course Outcomes to Program Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Introduce fundamental concepts of computer architecture [1SLO1, 1SLO7]	15%	
Introduce hardware and software integration and instruction controls [1SLO1, 1SLO2, 1SLO6, 1SLO7]	15%	
Identify the various aspects of Arduino compatible boards [1SLO1, 1SLO4, 1SLO7]	20%	

Link between the hardware and software optimization [1SLO1, 1SLO2, 1SLO7]	15%	
Apply programming skills to develop customized software [1SLO1, 1SLO2]	20%	
Apply different microcontrollers communication approaches [1SLO1, 1SLO2, 1SLO6, 1SLO7]	15%	

	Relationship to Program Student Outcomes (Out of 100%)																		
А	A B C D E F G H I J K L M SLO1 SLO2 SLO3 SLO4 SLO5 SLO6 SLO7											SLO7							
													36.67	22.5		6.67		7.5	26.67

Date Printed: 2023-12-14