

Jordan University of Science and Technology Faculty of Engineering Biomedical Engineering Department

BME562 Control And Communication In The Nervous System - JNQF Level: 7

First Semester 2023-2024

Course Catalog

3 Credit Hours. 3 Credit hours (3 h lectures). An introduction to the structural and functional elements common to nervous systems with emphasis on cellular dynamics, intraneuronal communication, sensory and effector system.

Text Book				
Title	?Neuroscience of Communication.?			
Author(s)	Webster			
Edition	2nd Edition			
Short Name	Ref#1			
Other Information				

Course References

Short name	Book name	Author(s)		Other Information
Ref#2	?Neuroscience: Exploring the Brain.?	Processing.? Oxford University Press. Bear, M.F., Connors, B., Paradiso, M. (2006)	3rd Edition	
Text Book	Principles of Neural Science	Kandel, E.R., Schwartz, J.H., Jessell, T.M.	6th Edition	

Instructor					
Name	Dr. Yazan Al Dweiri				
Office Location C5 L2					
Office Hours	Sun : 08:30 - 09:30 Sun : 10:30 - 12:00 Tue : 10:30 - 13:00 Wed : 08:30 - 11:30 Thu : 10:30 - 12:30				

Email

Class Schedule & Room

Section 2:

Lecture Time: Sun, Tue : 09:30 - 10:30 Room: E2010

Prerequisites				
Line Number	Course Name	Prerequisite Type		
102364	MED236A Physioanatomy	Prerequisite / Study		
284310	BME431 Physiological Modeling And Control Systems	Prerequisite / Study		

Tentative List of Topics Covered					
Weeks	Weeks Topic				
Weeks 1, 2	- Relationship between brain and behavior Distinct functional regions of the brain Localization of cognitive functions Representation of mental processes.				
Week 3	- Classes of cells within the nervous system Signaling ne tworks a nd t heir o rganization Conveying uniqueinf ormation.				
Weeks 4, 5	-lon channels and signaling - Characteristics and structure of ion channels Origin and determination of membrane potential Balance of ion fluxes Contribution of different ions. ? Electrical equivalent circuit.				
Week 6	- Local signaling: Passive electrical properties of neurons Membrane in put resistance Membrane c a p a c i t a n c e Efficiency of signal conduction, and velocity of propagation.				
Week 7	- Propagated signaling ? Theaction potential Properties of voltage-gated channels and signaling capabilities Signaling function and molecular structure.				
Weeks 8, 9	- Synaptic T ransmission Chemical vs. electrical synapses Signaling time and signal amplification Transmitter release Quantal units. ? Synaptic vesicles and mechanisms regulating their production and release.				
Week 10	- Signaling at the neuron ? muscle synapse - Neuromuscular junction and end plate potentials Patch clamp and single channel currents ACh gated channels Synaptic in tegration Glutamate, GABA, and Glycine mediated channels Integration of excitatory and inhibitory signals Grouping of synapses according to function				
Weeks 11, 12	- Codingof s ensory i nformation Correlating stimulus wit sh ensationStimulus energy and sensory modality Spatial distribution of sensory neurons Stimulus amplitude and intensity of sensation. ? Adaptation rate and duration of stimulation				
Weeks 13, 14	- Construction of visual images Visual perception Processing of motion, depth, form, and colorVisual attention and conscious awareness Visua IP rocessingEyes receptor sheetPhototransduction Receptor adaptation to changes in light intensity				

Mapping of Course Outcomes to Program Outcomes and NQF	Course Outcome	Assessment
Outcomes	Weight (Out of 100%)	method

Appreciate the role of control and communication in the nervous system in Biomedical Engineering [1SO4] [1L7K1]	8%	
Study the relationship between brain and behavior. [1SO1, 1SO3] [1L7K1]	10%	
Study the classes, structure, and organization of nerve cells. [1SO1, 1SO2, 1SO3, 1SO4, 1SO6, 1SO7] [1L7K1]	15%	
Analyze the origin of signals and signaling capability in the nervous system. [1SO1, 1SO3, 1SO4, 1SO6] [1L7S1]	15%	
Study local signaling in the nervous system. [1SO1, 1SO2, 1SO3, 1SO4, 1SO6] [1L7S1]	12%	
Study propagated signaling and intraneuronal / neuro- muscular synaptic transmission. [1SO1, 1SO2, 1SO3, 1SO4, 1SO6] [1L7S3]	10%	
Correlate the coding of sensory information to stimulus energy, modality spatial & temporal distribution. [1SO1, 1SO3, 1SO6] [1L7S2]	20%	
Apply neuro-communication principles to the construction and perception of visual images. [1SO1] [1L7S3]	10%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1 SO2 SO3 SO4 SO5 SO6 SO7						
32.32	6.9	22.32	18.65		17.32	2.5

Relationship to NQF Outcomes (Out of 100%)							
L7K1 L7S1 L7S2 L7S3							
33 27 20 20							

Date Printed: 2023-12-06