

Jordan University of Science and Technology Faculty of Engineering Biomedical Engineering Department

BME565 Magnetic Resonance Imaging - JNQF Level: 7

First Semester 2023-2024

Course Catalog

3 Credit Hours. Introduces physics of magnetic resonance. Covers magnetic field modalities, relaxation times, gradient and RF coils, pulse sequences, hardware, imaging techniques, artifacts, and applications.

Text Book					
Title	MRI Basic Principles and Applications				
Author(s)	Brian M. Dale PhD MBA,, Mark A. Brown PhD,, Richard C. Semelka MD,				
Edition	5th Edition				
Short Name	Textbook				
Other Information	ISBN 978-1-119-01305-1				

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref#1	Magnetic Resonance Imaging; physical principle and sequence design.	Robert W. Brown Ph.D.,, Yu-Chung N. Cheng Ph.D.,, E. Mark Haacke	1st Edition	

Instructor			
Name	Dr. Areen Al-Bashir		
Office Location	C5 L-1		
Office Hours	Sun : 13:00 - 13:30 Mon : 10:00 - 11:30 Mon : 13:00 - 13:30 Tue : 09:30 - 11:30 Wed : 10:00 - 11:30		
Email	akbashir@just.edu.jo		

Class Schedule & Room

Section 1: Lecture Time: Mon, Wed : 08:30 - 10:00 Room: C5025

Prerequisites						
Line Number	Prerequisite Type					
284600	BME460 Medical Imaging Systems	Prerequisite / Study				

Tentative List of Topics Covered					
Weeks	Weeks Topic				
Week 1	Production of net magnetization				
Week 2	Concepts of magnetic resonance				
Week 3	Relaxation				
Week 4	principles of magnetic resonance imaging				
Week 5	Pulse sequences				
Week 6	Measurement parameters and image contrast				
Week 7	Signal suppression techniques				
Weeks 8, 9	Artifacts & Motion artifact reduction techniques				
Week 10	Magnetic resonance angiography				
Weeks 11, 12	Advanced imaging applications				
Week 13	Magnetic resonance spectroscopy				
Week 14	MRI System				
Weeks 15, 16	Safety and Clinical Applications				

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Understand the effect of putting protons inside a magnetic field.Comprehend the interactions of the magnetic field produced by a radiofrequency probe and the nuclear spins, the induced precession and the process to give rise to the MRI signal. Know the concept of chemical shift, and why protons in fat and water resonate at slightly different signals, and how this phenomena of spin-lattice and spin-spin relaxation produces an effect on the measured MRI signal [1SO1] [1L7K1, 1L7S1]	30%	

Know the techniques for measuring spin-lattice and spin-spin relaxation times, the principles behind frequency encoding, phase encoding, and slice selection in magnetic resonance imaging, and the full implementation of both spin-echo and gradient-echo imaging sequences [1SO1, 1SO2] [1L7K1, 1L7S1]	20%	
Understand the theory and practical construction of radiofrequency coils, magnetic field gradients, and superconducting magnets. [1SO1, 1SO2] [1L7K1, 1L7S1, 1L7S3]	20%	
Know the Advanced techniques and specific clinical applications of MRI [1SO7] [1L7S1, 1L7S2, 1L7S3, 1L7C2, 1L7C4]	30%	

Relationship to Program Student Outcomes (Out of 100%)							
SO1 SO2 SO3 SO4 SO5 SO6 SO7							
50	20					30	

Relationship to NQF Outcomes (Out of 100%)							
L7K1 L7S1 L7S2 L7S3 L7C2 L7C4							
31.67	37.67	6	12.67	6	6		

Date Printed: 2023-11-30