

Jordan University of Science and Technology Faculty of Engineering Industrial Engineering Department

IE750 Operations Research And Management - JNQF Level: 9

First Semester 2023-2024

Course Catalog

3 Credit Hours. This course will introduce the students to advanced topics and applications of operations research particularly in the field of modeling, decision analysis and simulation. The course includes an introduction to nonlinear programming, decision making tools/trees and value of information, introduction to discrete event simulation systems, Markov chains and queuing theory. The course targets master students who have sufficient background in mathematics and probability models.

Teaching Method: On Campus

Text Book		
Title	Operations Research: Applications and Algorithms	
Author(s)	Wayne L. Winston	
Edition	4th Edition	
Short Name	Textbook	
Other Information		

Instructor		
Name	Prof. Dorid Dalalah	
Office Location	M5L3	
Office Hours		
Email	doraid@just.edu.jo	

Class Schedule & Room

Section 1: Lecture Time: Tue : 14:30 - 17:30 Room: M5124

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Introduction	From Textbook	
Weeks 2, 3, 4	Nonlinear programming	From Textbook	
Weeks 5, 6	Decision making under uncertainty		
Week 7	Decision trees		
Weeks 8, 9	Value of information	From Textbook	
Week 10	Queuing theory. Markov chains. Simulation.		
Weeks 11, 12, 13	Markov chains		
Weeks 14, 15	Simulation		
Week 16	Final exams		

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Construct and analyze advanced optimization models for complex real- world systems. [1SO1] [1L9K1]	20%	First Exam, Final Exam, Assignments
Utilize analytical techniques and software to solve nonlinear optimization models. [1SO2, 1SO7] [1L9S1]	20%	First Exam, Second Exam, Final Exam, Assignments
Employ decision trees and decision-making tools to evaluate alternative courses of action under uncertainty. [1SO4, 1SO6] [1L9K2, 1L9K3, 1L9C1]	20%	First Exam, Second Exam, Final Exam, Assignments
Develop the capability to apply Markov chains to model and analyze dynamic systems. [1SO1, 1SO2] [1L9K2]	20%	Final Exam, Assignments
Design and implement queuing systems along with discrete event simulation systems to model stochastic processes. [1SO4, 1SO6] [1L9S1, 1L9C1]	20%	Final Exam, Assignments

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	S07
30	20		20		20	10

Relationship to NQF Outcomes (Out of 100%)				
L9K1	L9K2	L9K3	L9S1	L9C1
20	26.67	6.67	30	16.67

```
Evaluation
```

Assessment Tool	Weight
First Exam	20%
Second Exam	25%
Final Exam	50%
Assignments	5%

Policy		
Attendance Policy	As per the university bylaws	
Makeup policy	As per the university bylaws	
Grading Policy According to the criteria mentioned in the syllabus		

Date Printed: 2024-03-18