

Jordan University of Science and Technology Faculty of Pharmacy Pharmacy Department

PHAR721 Advanced Pharmaceutical Organic Chemistry - JNQF Level: 9

First Semester 2024-2025

Course Catalog

3 Credit Hours. The aim of this course is to provide students with advanced knowledge of numerous aspects of organic chemistry, as it applies to modern medicinal chemistry. Topics include types and classification of reaction mechanisms with emphasis on some related reactions. Furthermore, the course covers various chemical reactions involving enolates and other carbon nucleophiles, organometallic compounds of group I and II metals as well as transition metals. The course also covers the fundamentals of heterocyclic compounds including properties, synthesis, and reactions of aliphatic and aromatic heterocycles with emphasis on five-membered, six-membered, and fused heterocycle.

Teaching Method: On Campus

	Text Book							
Title	Title Advanced Organic Chemistry							
Author(s)	Author(s) David E. Lewis							
Edition 1st Edition								
Short Name Textbook								
Other Information	2016							

Course References

Short name	Book name	Author(s)	Edition	Other Information	
Ref#2	Advanced Organic Chemistry Part A: Structure and Mechanisms	Francis A. Carey, Richard J. Sundberg	5th Edition	2007	
Ref#3	Advanced Organic Chemistry Part B: Reactions and Synthesis	, Francis A. Carey, Richard J. Sundberg	5th Edition	2007	
Ref# 4	Molecular Orbitals and Organic Chemical Reactions	lan Fleming	1st Edition	2010	

Instructor						
Name	Dr. Buthina Al-Oudat					
Office Location	P1L1					
Office Hours						
Email	baoudat@just.edu.jo					

Class Schedule & Room

Section 1:

Lecture Time: Mon, Wed: 10:00 - 11:30

Room: P1102

Tentative List of Topics Covered						
Weeks	Торіс	References				
Week 1	Introduction	1.1 - 1.4 From Textbook				
Week 2	Orbitals and Reactivity	Chapter 4 From Textbook				
Week 3	Frontier Orbitals and Chemical Reactions	Chapter 5 From Textbook				
Week 4	Reactive Intermediates: Carbocations	Chapter 9 From Textbook				
Week 5	Nucleophilic Substitution	4.1.1, 4.1.2, 4.2.1, 4.2.2 From Ref#2				
Week 6	Polar Addition and Elimination Reactions	5.1, 5.2, 5.3, 5.5, 5.7.1, 5.9.1, 5.9.2, 5.10. From Ref#2				
Week 7	Radical Reactions and Organic compounds of Phosphorus	13.1, 22.1, 22.4 From Textbook				
Weeks 7, 8, 9, 10	Carbonyl Chemistry	Chapter 7 From Ref#2, Chapter 1 and Chapter 2 From Ref#3				
Weeks 11, 12	Aromatic Substitution	Cahpter 11 From Ref#3				
Weeks 12, 13, 14	Metal-catalyzed Reactions	Chapter 7 and Chapter 8 From Ref#3				

	Course Outcome Weight	Assessment	l
Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	(Out of 100%)	method	l

Explain the concept of Frontier Orbitals and their relationship with chemical reactivity [1PLO-MP1] [50L9K1, 50L9S1]	15%	
Discuss the properties and reactions of reactive intermediates. [1PLO-MP1] [50L9K1, 50L9S1]	15%	
Explain the principles underlying nucleophilic substitution reactions, polar addition reactions, and elimination reactions and related reaction mechanisms. [1PLO-MP1] [50L9K1, 50L9S1]	20%	
Discuss the properties and reactions of carbonyl compounds. [1PLO-MP1] [50L9K1, 50L9S1]	25%	
Explain the principles underlying aromatic substitution reactions and metal-catalyzed reactions and related reaction mechanisms. [1PLO-MP1] [50L9K1, 50L9S1]	25%	

PLO1.1	PLO2.1	PLO3.2	PLO3.3	PLO2.2	PLO2.3	PLO2.4	PLO3.1	PLO3.4	PLO3.5	PLO3.6	PLO4.1	PLO4.2	PLO4.3	PLO4.4	PLO- PT1.1		

Relationship to NQF Outcomes (Out of 100%)							
L9K1	L9S1						
50	50						

Date Printed: 2024-10-26