

Jordan University of Science and Technology Faculty of Pharmacy Doctor Of Pharmacy (Pharm D.) Department

PHMD358 Clinical Pharmacokinetics - JNQF Level: 7

Second Semester 2023-2024

Course Catalog

3 Credit Hours. This course applies the basic principles of pharmacokinetic science to optimize dosing regimens in patients based on plasma concentration data obtained from therapeutic drug monitoring (TDM). The students will be exposed to examples of drug classes that represent prototypes of main drug categories based on their pharmacokinetic criteria. The students are expected to deal with troubleshooting issues faced in the clinic related to drug dosing regimen adjustments needed based on TDM.

Teaching Method: Blended

Text Book						
Title	Concepts in Clinical Pharmacokinetics					
Author(s)	Joseph T. DiPiro et. al.					
Edition	6th Edition					
Short Name	Ref#1					
Other Information	https://drive.google.com/file/d/1etme9wW2XE8XPVAxcDLahkZaADdnfFnM/view?usp=sharing					

Instructor				
Name	Dr. Ruba Darweesh			
Office Location	M5-L0			
Office Hours	Sun : 11:30 - 12:30 Sun : 13:30 - 14:30 Mon : 08:30 - 09:30 Tue : 11:30 - 12:30 Tue : 13:30 - 14:30 Thu : 09:30 - 10:30			
Email	rsdarweesh@just.edu.jo			

Instructor				
Name	Dr. Mo'tasem Alsmadi			
Office Location	P1-L1			
Office Hours	Sun : 09:30 - 11:00 Mon : 13:00 - 14:30 Tue : 09:30 - 11:00 Wed : 13:00 - 14:30			
Email	mmalsmadi@just.edu.jo			

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue : 12:30 - 13:30 Room: SOUTH HALL

Section 4: Lecture Time: Mon, Wed : 10:00 - 11:30 Room: P1103

	Prerequisites	
Line Number	Course Name	Prerequisite Type
313550	PHMD355 Biopharmaceutics And Pharmacokinetics	Prerequisite / Study

	Tentative List of Topics Covered							
Weeks	Торіс	References						
Week 1	Introduction and terminology (Active learning)	CH1 From Ref#1						
Week 2	Basic PK calculations after IV-bolus dosing (Active learning)	CH2 & CH3 From Ref#1						
Week 2	Oral absorption (single dose)	CH7 From Ref#1						
Week 3	Multiple intravascular and extravascular dosing and steady state concentration	CH4 & CH5 & CH7 From Ref#1						
Week 4	Protein binding & Drug distribution	CH8 From Ref#1						
Week 5	Hepatic and renal drug elimination	CH9 From Ref#1						
Week 7	PK variation (Active learning)	CH11 From Ref#1						
Week 7	Model-independent relationships	CH11 From Ref#1						
Week 8	IV infusion	CH4 From Ref#1						
Week 9	Theophylline	14 From Ref#1						
Week 10	Digoxin	CH15 From Ref#1						
Week 12	Aminoglycosides	CH12 From Ref#1						
Week 13	Two compartments model	CH6 From Ref#1						
Week 13	Vancomycin	CH13 From Ref#1						
Week 14	Nonlinear processes	CH10 From Ref#1						
Week 15	Phenytoin	CH15 From Ref#1						

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Apply the basic pharmacokinetic terminology and mathematical principles to pharmacokinetic data after a single intravenous bolus dose of drugs with linear pharmacokinetics [1PLO1.1, 1PLO3.1] [1L7K1, 1L7S1]	7%	First Exam
Solve pharmacokinetic problems after a single extravascular dose of drugs with linear pharmacokinetics [1PLO1.1, 1PLO3.1] [1L7S2, 1L7C2]	4%	First Exam
Design suitable dosing regimens of multiple intravenous bolus and multiple extravascular doses of drugs with linear pharmacokinetics [1PLO2.1, 1PLO2.2, 1PLO2.3] [1L7S2, 1L7C3]	7%	First Exam
Examine the effect of plasma and tissue binding on the rate and extent of drug distribution [1PLO1.1, 1PLO3.1] [1L7K1, 1L7S1]	5%	First Exam
To investigate the effect of renal and hepatic elimination on drug exposure [1PLO1.1, 1PLO3.1] [1L7K1, 1L7S1]	7%	First Exam
Evaluate factors that affect intersubject variability in drugs ADME processes and their possible effect on required dosing regimens [1PL01.1, 1PL03.1] [1L7K1, 1L7S1]	3%	Second Exam
To assess pharmacokinetic data using a model-independent (non-compartmental pharmacokinetic analysis (NCA)) approach for drugs with linear pharmacokinetics [1PLO1.1, 1PLO2.1] [1L7S2, 1L7C3]	7%	Second Exam
To apply the single N-infusion equations on the therapeutic monitoring of renally and hepatically eliminated drugs (e.g. theophylline, digoxin) with a one-compartment model [1PLO2.1, 1PLO2.2, 1PLO2.3, 1PLO3.1, 1PLO3.3] [1L7K1, 1L7S3, 1L7C4]	20%	Second Exam
To apply the multiple IV-infusion equations on the therapeutic monitoring of renally eliminated drugs with a one-compartment model (e.g. aminoglycosides) and a two-compartment model (e.g. vancomycin) [1PLO2.1, 1PLO2.2, 1PLO2.3, 1PLO3.1, 1PLO3.3] [1L7K1, 1L7S3, 1L7C4]	26%	Final Exam
To apply the nonlinear pharmacokinetic equations on the therapeutic monitoring of drugs undergoing nonlinear hepatic metabolism (e.g. phenytoin) [1PLO2.1, 1PLO2.2, 1PLO2.3, 1PLO3.1, 1PLO3.3] [1L7K1, 1L7S3, 1L7C4]	14%	Final Exam

				F	Relations	hip to Pro	gram Stu	dent Outc	omes (Ou	it of 100%)				
PL01.1	PLO2.1	PLO2.2	PLO2.3	PLO2.4	PLO3.1	PLO3.2	PLO3.3	PLO3.4	PLO3.5	PLO3.6	PLO4.1	PLO4.2	PLO4.3	PLO4.4	PLO5.1
16.5	17.83	14.33	14.33		25		12								

		Relationshi	p to NQF Outcomes (Out of 100%)		
L7K1	L7S1	L7S2	L7S3	L7C2	L7C3	L7C4
31	11	9	20	2	7	20

Evaluation					
Assessment Tool	Weight				
First Exam	30%				
Second Exam	30%				
Final Exam	40%				

	Policy
Exams	1) The exams will be calculation-based in addition to questions about basic understanding of clinical pharmacokinetics concepts
	2) Grades will not be announced by e-mail
Cheating	The commitment of the acts of cheating and deceit such as copying during examinations, altering examinations for re-grade, plagiarism of homework assignments, and in any way representing the work of others as your own is dishonest and will not be tolerated. Standard JUST policy will be applied
Attendance	 Excellent attendance is expected for both in class and synchronous online sessions. J.U.S.T. policy requires the faculty member to assign ZERO grade (35) if a student misses 10% of the classes without valid excuse approved by the dean according to the university rules. If you miss a class, it is your responsibility to find out about any announcements or assignments you may have missed.
Participation	Participation is expected from each students in discussions made in class which is useful to both the students who participate by hum-self and his attending colleagues
Withdraw	The last day of courses withdrawal (without reimbursement of tuition fees) is one day before the final exam date

Date Printed: 2024-03-28