

Jordan University of Science and Technology Faculty of Agriculture Plant Production Department

PP745 Advanced Plant Pathology

First Semester 2019-2020

Course Catalog

3 Credit Hours. The contents of this course will cover two major components of plant-pathogen interactions, the first part of the course will cover the mechanisms and strategies used by plant pathogens to colonize plant tissues (pathogenesis) and the second part will focus on host plant defenses and responses against the invading pathogen (s) (host defenses). General principles and specific interactions using selected pathosystems will be used to illustrate microbial pathogenesis strategies. Interactions with economic significance and level of available knowledge will be chosen for detailed analysis. We will also highlight non-pathogenic interactions. Emphasis on this course will be on basic understanding of the cellular and molecular mechanisms of host pathogen interactions and genetics of plant pathogenesis covering milestone and recent advances in the area of plant pathogenesis.

Text Book				
Title	Plant Pathology			
Author(s)	Agrios, G. N.			
Edition	5th Edition			
Short Name	Agrios plant pathology			
Other Information	Chapter 4			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Annu. Rev. Phytopathol. 1971.9:275-296.	CURRENT STATUS OF THE GENE- FOB-GENE CONCEPT	H. Flor	1st Edition	Annu. Rev. Phytopathol. 1971.9:275-296.
Genes 2018, 9, 339-	Disease Resistance Mechanisms in Plants	Ethan J. Andersen , Shaukat Ali , Emmanuel Byamukama , Yang Yen and Madhav P. Nepal	1st Edition	Genes 2018, 9, 339; doi:10.3390/genes9070339

Annu. Rev. Phytopathol. 2007.45:399-436.	Elicitors, Effectors, and R Genes: The New Paradigm and a Lifetime Supply of Questions	Andrew F. Bent and David Mackey	1st Edition	Annu. Rev. Phytopathol. 2007.45:399-436.
Physiological Plant Pathologv (1982) 21, 1-11	Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato	P. ,J. G. M. DE WIT and G. SPIKMAN	1st Edition	Physiological Plant Pathologv (1982) 21, 1-11
Annu. Rev. Phytopathol. 2001.39:385-417	SURFACE ATTACHMENT AND PRE- PENETRATION STAGE DEVELOPMENT BY PLANT PATHOGENIC FUNGI	Sara L. Tucker and Nicholas J. Talbot	1st Edition	Annu. Rev. Phytopathol. 2001.39:385-417
SCIENCE, VOL. 239: 288- 209	A Mechanism for Surface Attachment in Spores of a Plant Pathogenic Fungus	JOHN E. HAMER,* RicHARD J. HowARD, FORREST G. CHUMLEY, BARBARA VALENT	1st Edition	SCIENCE, VOL. 239: 288- 209
Microbes and Infection, 2, 2000, 1631?1641	The role of fungal appressoria in plant infection	Holger B. Deising, Stefan Werner, Marcus Wernitz	1st Edition	Microbes and Infection, 2, 2000, 1631?1641
Current Opinion in Plant Biology 2015, 26:8?13	Regulation of appressorium development in pathogenic fungi	Lauren S Ryder and Nicholas J Talbot	1st Edition	Current Opinion in Plant Biology 2015, 26:8?13
PNAS vol. 98 u no. 14 u 8133?8138	The role of haustoria in sugar supply during infection of broad bean by the rust fungus	Ralf T. Voegele, Christine Struck, Matthias Hahn, and Kurt Mendgen	1st Edition	PNAS vol. 98 u no. 14 u 8133?8138
Current Opinion in Plant Biology 2003, 6:320?326	Establishing compatibility between plants and obligate biotrophic pathogens	Ralph Panstruga	1st Edition	Current Opinion in Plant Biology 2003, 6:320?326
Journal of Cell Science (2018) 131, jcs207373. doi:10.1242/jcs.207373	Building a plant cell wall at a glance	Edwin R. Lampugnani*, Ghazanfar Abbas Khan*, Marc Somssich* and Staffan Persson	1st Edition	Journal of Cell Science (2018) 131, jcs207373. doi:10.1242/jcs.207373

Annu. Rev. Phytopathol. 2014.52:427-451	Plant Cell Wall? Degrading Enzymes and Their Secretion in Plant-Pathogenic Fungi	Christian P. Kubicek, Trevor L. Starr, and N. Louise Glass	1st Edition	Annu. Rev. Phytopathol. 2014.52:427-451
The Plant Cell, Vol. 8, 1723-1733, October 1996 O 1996 American Society of Plant Physiologists	Host-Selective Toxins: Agents of Compatibility	Jonathan D. Walton	1st Edition	The Plant Cell, Vol. 8, 1723- 1733,
MOLECULAR PLANT PATHOLOGY (2001) 2(4), 229?239	Host-selective toxins as agents of cell death in plant? fungus interactions	JONATHAN E. MARKHAM AND JACQUES HILLE	1st Edition	MOLECULAR PLANT PATHOLOGY (2001) 2(4), 229?239
The Plant Cell, Vol. 8, 1821-1831,	Preformed Antimicrobial Compounds and Plant Defense against Funga1 Attack	Anne E. Osbourn	1st Edition	The Plant Cell, Vol. 8, 1821- 1831,
Int. J. Mol. Sci. 2009, 10, 3400-3419; doi:10.3390/ijms10083400	Plant Antimicrobial Agents and Their Effects on Plant and Human Pathogens	Roc?o Gonz?lez-Lamothe , Gabriel Mitchell , Mariza Gattuso , Moussa S. Diarra , Fran?ois Malouin , and Kamal Bouarab	1st Edition	Int. J. Mol. Sci. 2009, 10, 3400-3419; doi:10.3390/ijms10083400
Current Opinion in Plant Biology 2015, 26:8?13	Abrogation of disease development in plants expressing animal antiapoptotic genes	Lauren S Ryder and Nicholas J Talbot	1st Edition	Current Opinion in Plant Biology 2015, 26:8?13
Molecular Plant Pathology (2019) 20(8), 1163?1178	The plant hypersensitive response: concepts, control and consequences	PETER BALINT-KURTI	1st Edition	Molecular Plant Pathology (2019) 20(8), 1163?1178
Journal of Experimental Botany, Vol. 59, No. 3, pp. 501?520, 2008 doi:10.1093/jxb/erm239	The hypersensitive response; the centenary is upon us but how much do we know?	Luis A. J. Mur1,, Paul Kenton, Amanda J. Lloyd, Helen Ougham and Elena Prats	1st Edition	Journal of Experimental Botany, Vol. 59, No. 3, pp. 501?520, 2008 doi:10.1093/jxb/erm239
Trends in Plant Science, February 2012, Vol. 17, No. 2	Phytoalexins in defense against pathogens	lshita Ahuja, Ralph Kissen and Atle M. Bones	1st Edition	Trends in Plant Science, February 2012, Vol. 17, No. 2
Annu. Rev. Phytopathol. 1999. 37:285?306	PHYTOALEXINS: What Have We Learned After 60 Years?	HAMMERSCHMIDT, R	1st Edition	Annu. Rev. Phytopathol. 1999. 37:285?306

Microbiological Research 212?213 (2018) 29?37	Pathogenesis- related proteins and peptides as promising tools for engineering plants with multiple stress tolerance	Sajad Alia,b, Bashir Ahmad Ganaib, Azra N Kamilib, Ajaz Ali Bhatc, Zahoor Ahmad Mira, Javaid Akhter Bhatd, Anshika Tyagia, Sheikh Tajamul Islame, Muntazir Mushtaqd, Prashant Yadava, Sandhya Rawata, Anita Grovera	1st Edition	Microbiological Research 212?213 (2018) 29?37
Physiological and Molecular Plant Pathology (1999) 55, 85?97	The families of pathogenesis- related proteins, their activities, and comparative analysis of PR-1 type proteins	L. C. VAN LOON* and E. A. VAN STRIEN	1st Edition	Physiological and Molecular Plant Pathology (1999) 55, 85?97

Instructor			
Name	Dr. Firas Abu El Samen		
Office Location	C4L2		
Office Hours	Sun : 08:00 - 10:00 Mon : 10:30 - 13:30 Wed : 10:30 - 13:30 Thu : 08:00 - 10:00		
Email	hiasat@just.edu.jo		

Class Schedule & Room

Section 1: Lecture Time: Mon, Wed : 08:30 - 10:00 Room: LAB

Tentative List of Topics Covered				
Weeks	Торіс	References		
Week 1	Introduction to genetics of plant-pathogen interactions: Key definitions, types of resistance, R-genes, Avirulence and virulence, gene for gene concept, compatible and incompatible interactions, forma specialis and race concepts. Readings: Chapter 4. Agrios 2005.	Chapter 4 From Agrios plant pathology		
Week 2	Disease resistance in plants (An introduction): Definitions and types of resistance	From Annu. Rev. Phytopathol. 1971.9:275- 296., From Genes 2018, 9, 339-, From Annu. Rev. Phytopathol. 2007.45:399-436., From Physiological Plant Pathologv (1982) 21, 1-11		

Week 3	Infection process in plant pathogens I (adhesion): Fungal attachment to plant surface. Mechanisms of spore adhesion, mechanism of spore adhesion in Magnaporthe grisea, Nectria haematococca, Colletotrichium spp., bacterial attachment. Germination of spores on plant surface and formation of infection structures.	From Annu. Rev. Phytopathol. 2001.39:385-417, From SCIENCE, VOL. 239: 288-209
Week 4	Infection process in plant pathogens II (Penetration): Penetration through stomates, direct penetration, Thigmotropic responses, penetration by biotrophic, hemi-biotrophic and necrotrophic pathogens, induction of appressorium, plant waxes, cutin, pectin, cellulose, cell wall degrading enzymes, cutinases, pectinases and cellulases	From Microbes and Infection, 2, 2000, 1631? 1641, From Current Opinion in Plant Biology 2015, 26:8? 13
Week 5	Infection process in plant pathogens III (Colonization) in biotrophic plant pathogens:Mechanisms of colonization of plant tissues by plant pathogens. Haustoria and biotrophic interfacial complex (structure and functions).	From PNAS vol. 98 u no. 14 u 8133?8138, From Current Opinion in Plant Biology 2003, 6:320?326
Week 6	Biochemistry of plant cell wall.	From Journal of Cell Science (2018) 131, jcs207373. doi:10.1242/jcs.207373
Week 7	Enzymes and pathogenicity: Cell wall degrading enzymes (CWDEs) produced by plant pathogens: Cutinases, Pectinases; Xylanases; Cellulases; Glucanases; proteinases etc.,	From Annu. Rev. Phytopathol. 2014.52:427-451
Week 8	Toxins in plant pathogenesis: Non ?host specific (selective toxins) (non-HSTs) and Host specific toxins (HSTs).	From The Plant Cell, Vol. 8, 1723-1733, October 1996 O 1996 American Society of Plant Physiologists, From MOLECULAR PLANT PATHOLOGY (2001) 2(4), 229?239
Week 9	Structural defenses in plants and preformed compounds: Preformed defense mechanisms	From The Plant Cell, Vol. 8, 1821-1831,, From Int. J. Mol. Sci. 2009 , 10, 3400-3419; doi:10.3390/ijms10083400
Week 10	Genetics and physiology of plant disease and disease resistance. (host defenses): Physiology of resistance in plants, Hypersensitive response (HR) and programmed cell death (PCD), history of HR, general sequence of events of HR, Reactive oxygen species (ROS) and role in plant defense, oxidative burst, execution of HR.	From Current Opinion in Plant Biology 2015, 26:8? 13, From Molecular Plant Pathology (2019) 20(8), 1163?1178, From Journal of Experimental Botany, Vol. 59, No. 3, pp. 501? 520, 2008 doi:10.1093/jxb/erm239

Week 11	Plant Disease resistance genes (R- genes) structure and function: Major classes of R-genes, proposed functions of different domains, Chromosomal arrangement of R-genes, Forces affecting R-gene evolution, Effects of mutation and selection on R-gene evolution, Utilization of resistance genes as transgenics.	
Week 12	Avirulence genes and avr proteins of plant pathogens:Receptor-ligand model, Bacterial avr genes, Structural features of avirulence genes, organization of Avr genes, Bacterial Avr genes functions, models for Avr genes functions, Type III secretion system in phytopathogenic bacteria.	
Week 13	Host responses to infection I: Phenolic compounds, phenylpropanoid pathway, phenolics and host plant defenses, Lignification and papillae formation.	
Week 14	Host responses to infection II: (Phytoalexins): Phytoalexins: Structure and distribution, Biosynthesis and elicitation, defense or just a response to infection? evidence of role in host defenses, pathogens may detoxify phytoalexins, Detoxification can be a tolerance mechanism and can be required for pathogenicity.	From Trends in Plant Science, February 2012, Vol. 17, No. 2, From Annu. Rev. Phytopathol. 1999. 37:285?306
Week 15	Host responses to infection III: Pathogenesis related proteins (PR-proteins): Pathogenesis related proteins and host defense, Characteristics of PR-proteins and their proposed functions, families of PR-proteins (PR-1, PR-2, PR-3, PR-4 and PR-5 proteins families), role in host plant defense against invading pathogens, evidence for and against their role in host defense.	From Microbiological Research 212?213 (2018) 29?37, From Physiological and Molecular Plant Pathology (1999) 55, 85? 97
Week 16	Systemic Acquired Resistance (SAR) and induced systemic resistance (ISR): Differences between SAR and ISR and mechanisms involved in each type of resistance.	

Relationship to Program Student Outcomes (Out of 100%)						
SLO1 SLO2 SLO3 SLO4 SLO5						

Date Printed: 2020-10-21