

Jordan University of Science and Technology Faculty of Engineering Aeronautical Engineering Department

AE341 Fluid Mechanics - JNQF Level: 7

First Semester 2023-2024

Course Catalog

3 Credit Hours. Fluids and their properties, Conservation equations and their applications, Dimensional analysis and similarity, Two-dimensional inviscid flow, stream function, and velocity potential, Superposition of elementary flow, Incompressible laminar and turbulent flow in pipes, friction factor, Laminar flow between parallel plates and in ducts, Elementary boundary layer flow, skin friction and drag, Pump and pipeline system characteristics.

Text Book		
Title	Introduction to Fluid Mechanics	
Author(s)	R.W. Fox, A.T. McDonalds, and P. J. Pritchard	
Edition	8th Edition	
Short Name	Textbook	
Other Information		

Instructor		
Name	Dr. MUATH BANI HANI	
Office Location	-	
Office Hours	Sun : 10:30 - 11:30 Mon : 09:30 - 11:30 Tue : 10:30 - 11:30 Wed : 09:30 - 10:30 Thu : 10:30 - 11:30	
Email	mabanihani@just.edu.jo	

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue, Thu : 09:30 - 10:30 Room: A3130

Prerequisites			
Line Number	Course Name	Prerequisite Type	
921010	PHY101 General Physics (1)	Prerequisite / Pass	
902030	MATH203 Ordinary Differential Equations	Prerequisite / Pass	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Introducion	chapter 1 From Textbook	
Week 2	Fundamental Concepts	Chapter 2 From Textbook	
Week 3	Fluid Statics	Chapter 3 From Textbook	
Weeks 4, 7	Basic Equations in Integral Form for a Control Volume.	Chapter 4 From Textbook	
Weeks 8, 9	Introduction to Differential analysis of fluid motion	Chapter 5 From Textbook	
Weeks 10, 12	Incompressible inviscid Flow	Chapter 6 From Textbook	
Weeks 13, 14	Dimensional AnalysiS and Similitude	Chapter 7 From Textbook	
Weeks 15, 16	Internal Incompressible Viscous Flow	Chapter 8 From Textbook	

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Identify the fluid properties where the students will be able to demonstrate a comprehensive understanding of fundamental fluid properties, including viscosity, density, and pressure, and their role in fluid mechanics. [100SO1] [100L7K1]	10%	
Analyze fluid problems in motion; where the students will be able to apply the principles of mass, momentum, and energy conservation equations to analyze and solve practical problems in fluid dynamics. [100SO1] [100L7K1]	20%	
Perform dimensional analysis and similitude where the students will proficiently employ dimensional analysis and similarity techniques to model and predict fluid flow behavior in different engineering scenarios. [100SO1] [100L7K1]	15%	

Analyze two-dimensional inviscid flow; where the students will gain the ability to analyze and describe two-dimensional inviscid flow using stream functions and velocity potentials and apply superposition principles to determine the combined effect of elementary flows. [100SO1] [100L7K1]	20%	
Analyze and comprehend the elementary boundary layer flow, skin friction, and drag forces. [100SO1] [100L7K1]	15%	
Analyze pump and pipeline systems; while considering characteristics such as head losses, pump performance, and pipeline design, thereby demonstrating competence in designing and evaluating fluid transport systems. [100SO2] [100L7S1]	20%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	SO7
80	20					

Relationship to NQF Outcomes (Out of 100%)		
L7K1	L7S1	
80	20	

Evaluation		
Assessment Tool	Weight	
First	30%	
Second	30%	
Final	40%	

Policy				
Course Policy	Attendance The student is required to attend all the registered courses. The instructor shall register student attendance or absence electronically. JUST policy requires the faculty member to assign ZERO grade (35) if a student misses 20% of the classes. If you miss a class, it is your responsibility to find out about any announcements or assignments you may have missed Exam/Homework			
	Makeup exams should not be given unless there is a valid excuse according to JUST policies. Arrangements to take an exam at a time other than the one scheduled MUST be made prior to the scheduled exam time. Cheating or copying from a neighbor on exam, quiz, or homework is an illegal and unethical activity. The standard JUST policy will be applied. All assignments must be your own work (your own words) Students are responsible for all the information provided in the lecture. Information presented in class supersedes any information posted elsewhere.			