

Jordan University of Science and Technology Faculty of Engineering Aeronautical Engineering Department

AE576 Aircraft Navigation

Second Semester 2023-2024

Course Catalog

3 Credit Hours. Fundamentals of aircraft navigation systems, Inertial navigation system (INS) principles, Global Positioning System (GPS) principles, Radio navigation systems, Air data based navigation systems, Least squares estimation and Kalman filtering for optimal estimation of stochastic systems

Teaching Method: Blended

Text Book		
Title	Avionics Navigation Systems	
Author(s)	Myron Kayton and Walter R. Fried	
Edition	2nd Edition	
Short Name	Kayton	
Other Information		

Instructor		
Name	Dr. KHALED ALJANAIDEH	
Office Location	-	
Office Hours		
Email	kfaljanaideh@just.edu.jo	

Class Schedule & Room Section 1: Lecture Time: Sun, Tue : 11:30 - 12:30 Room: E2114

Prerequisites			
Line Number	Course Name	Prerequisite Type	
713700	AE370 Instrumentation	Prerequisite / Study	
714640	AE464 Automatic Control	Prerequisite / Pass	

Tentative List of Topics Covered				
Weeks	Торіс	References		
Weeks 1, 2	Introduction			
Weeks 2, 3, 4	Mathematical review			
Weeks 5, 6, 7, 8	Global Positioning System (GPS) principles			
Weeks 9, 10, 11, 12	Inertial navigation systems (INS) principles			
Weeks 13, 14, 15	Airdata-based and radio navigation systems			
Weeks 15, 16	State estimation and Kalman filtering with application to navigation			
Weeks 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16	MATALB basics and course projects (online lectures)			

Mapping of Course Outcomes to Program Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Know basics of mathematics used in navigation systems analysis [10SO1, 10SO6]	20%	
Design and analysis of inertial navigation systems [5SO1, 5SO2, 3SO5, 5SO6]	20%	
Know basics of global navigation satellite systems [7SO1, 5SO2, 5SO5, 8SO6]	20%	
Know basics of least squares estimation, Kalman filtering, and optimal estimation [5SO1, 5SO2, 5SO6]	20%	
Be familiar with airdata-based and radio navigation systems [5SO2, 5SO6]	20%	

Relationship to Program Student Outcomes (Out of 100%)						
SO1	SO2	SO3	SO4	SO5	SO6	S07
27.82	26.22			7.33	38.62	

Evaluation	
Assessment Tool	Weight
First Exam	20%

Second Exam	20%
GPS Project	10%
INS Project	10%
Final Exam	40%

Policy		
Project policy	Conceptual discussion is allowed. However, all substantive work must be your own.	
Classroom rules	No excessive talking; no eating; no open laptops; no texting; no smart phone usage for any reason.	

Date Printed: 2024-02-27