

Jordan University of Science and Technology Faculty of Science & Arts Mathematics Department

MATH203 Ordinary Differential Equations

Summer Semester 2021-2022

Course Catalog

3 Credit Hours. Introductions, classification, first order differential equations, applications. Differential equations of higher order and their solutions. Applications, solutions by series near ordinary points, Solving IVPS using Laplace transform. Linear systems of differential equations.

	Text Book
Title	Fundamentals of Differential Equations.
Author(s)	R. Nagle, E. Saff and A. Snider
Edition	8th Edition
Short Name	TextBook
Other Information	

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref 1	A First Course in Differential Equations with Applications,	D. G. Zill	10th Edition	
Ref 2	Elementary Differential Equations	E.D. Rainville and P.E. Bedient	4th Edition	

Instructor		
Name	Mrs. Inam Nuseirat	
Office Location	-	
Office Hours	Sun : 13:00 - 14:30 Mon : 13:00 - 14:30 Tue : 13:00 - 14:30 Wed : 13:00 - 14:30	

_		٠	
-	ma	I	
_	ma	I	

imnuseir@just.edu.jo

Instructor		
Name	Prof. Mahmoud Alrawashdeh	
Office Location	-	
Office Hours	Sun : 10:00 - 11:30 Mon : 10:00 - 11:30 Tue : 10:00 - 11:30 Wed : 10:00 - 11:30	
Email	msalrawashdeh@just.edu.jo	

Instructor		
Name	Farah Ababneh	
Office Location	-	
Office Hours		
Email	faababneh@just.edu.jo	

Class Schedule & Room

Section 1:

Lecture Time: Sun, Mon, Tue, Wed : 08:30 - 10:00 Room: NG54

Section 2: Lecture Time: Sun, Mon, Tue, Wed : 08:30 - 10:00 Room: NG43

Section 3: Lecture Time: Sun, Mon, Tue, Wed : 10:00 - 11:30 Room: SF05

Section 4: Lecture Time: Sun, Mon, Tue, Wed : 11:30 - 13:00 Room: NG43

Section 5: Lecture Time: Sun, Mon, Tue, Wed : 13:00 - 14:30 Room: SF07

Prerequisites				
Line Number	Course Name	Prerequisite Type		
901020	MATH102 Calculus 2	Prerequisite / Pass		

	Tentative List of Topics Covered	
Weeks	Торіс	References

Week 1	Introduction. Solutions and Differential Equations and Initial Value Problems. Existence and Uniqueness Theorem. First Order Differential equations and Separable Equations.	From TextBook
Week 2	Linear Equations, Exact Equations and Special Integrating Factors. Bernoulli Equation, Homogeneous Equations and Clairaut Equation	From TextBook
Week 3	Substitutions and Transformations. Orthogonal Trajectories. Higher order Differential Equations. Linear Differential Operators. Fundamental Solutions of Differential Equations. Homogeneous Linear Equations with Constant Coefficients	From TextBook
Week 3	Cauchy Euler Equations and Reduction of Order. Auxiliary Equations with Complex Roots. Methods of Undetermined Coefficients. Methods of Variation of Parameters.	From TextBook
Week 4	Mechanical Vibrations and Simple Harmonic Motion. Damped Free and Forced Vibrations. Definition of Laplace Transform. Properties of Laplace Transform and Its Inverse	From TextBook
Week 5	Solving Initial Value Problems Using Laplace Transform. Power Series. Radius Of Convergence and Ordinary and Singular Points.	From TextBook
Week 6	Series Solution of Differential Equations. Review of Matrices and Vectors Linear Systems in Normal Form. Homogeneous Systems with constant Coefficients	From TextBook
Week 7	Nonhomogeneous Linear Systems.	From TextBook
Week 8	Final Exam	

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Be able to identify, formulate and solve first order linear differential equations and their applications. [1SLO1]	25%	Final Exam, midterm exam
Be able to use the Auxiliary equation and reduction of order to solve homogeneous higher order linear DE's, and to use the method of undetermined coefficients and the variation of parameters method to solve differential equations. [2SLO1, 1SLO2]	30%	
Be able to use Laplace transforms and their inverses to solve differential equations. [3SLO1, 2SLO2]	20%	
Be able to use the power series method to solve differential equations. [2SLO1, 1SLO2]	15%	
Be able to solve modeled problems using differential equations (Physical, chemical, or economic problems). [1SLO1, 1SLO2]	10%	

Relationship to Program Student Outcomes (Out of 100%)					
SLO1	SLO2	SLO3	SLO4	SLO5	SLO6
72	28				

Eval	uation

Assessment Tool	Weight
Final Exam	50%
midterm exam	50%

Policy		
Midterm exam	50	
Final exam	50	

Date Printed: 2022-08-24