

Jordan University of Science and Technology Faculty of Science & Arts Mathematics Department

MATH307 Real Analysis (1) - JNQF Level: 7

Second Semester 2023-2024

Course Catalog

3 Credit Hours. Functions: Limits, continuity, uniform continuity, extreme value theorem, Bolzano-Weierstrass theorem and Heine-Borel theorem. Differentiability: Theorems on differentiability, mean value theorems, application, L?Hospitals rule and Taylor?s theorem. Riemann integration: integrability, algebra of integrable functions, mean value theorems for integration.

Teaching Method: On Campus

Text Book			
Title	Introduction to Real Analysis		
Author(s)	R. Bartle and D. Sherbert		
Edition	3rd Edition		
Short Name	TextBook		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref 1	Introduction to Real Analysis	Robert L. Brahenec	1st Edition	
Ref 2	Introduction to Analysis	Edward D. Gaughan,	1st Edition	
Ref 3	An Introduction to Mathematical Analysis	Jonathan Lewin and Myrtle Lewin,	1st Edition	

Instructor			
Name	Prof. Mohammad Al Dolat		
Office Location	PH2 LEVEL 0		

Office Hours	Sun : 08:00 - 10:00 Mon : 10:30 - 12:30
	Tue : 10:00 - 11:00 Wed : 13:00 - 14:00
Email	mmaldolat@just.edu.jo

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue, Thu : 11:30 - 12:30 Room: NG55

Prerequisites			
Line Number	Course Name	Prerequisite Type	
903011	MATH301 Advanced Calculus	Prerequisite / Pass	

Tentative List of Topics Covered				
Weeks	Торіс	References		
Weeks 1, 2	Chapter 4: Limits of functions, algebra of limits	From TextBook		
Week 3	Chapter 4 : Theorems on limits, limits of monotone functions.	From TextBook		
Week 4	Chapter 5: Continuous functions, sequential continuity	From TextBook		
Week 5	Chapter 5: Combinations of continuous functions.	From TextBook		
Week 5	Chapter 5: Continuous functions on intervals	From TextBook		
Week 6	Chapter 5: Uniform continuity, approximation of functions by polynomials	From TextBook		
Week 7	Chapter 6: The derivative of a function, algebra and properties of differentiable functions	From TextBook		
Week 8	Chapter 6: Rolle?s theorem, mean value theorem	From TextBook		
Week 9	Chapter 6: Applications of the derivative	From TextBook		
Week 10	Chapter 6: L?Hospital?s rule	From TextBook		
Week 11	Chapter 6: The inverse function theorem. Taylor?s theorem	From TextBook		
Week 12	Chapter 7: Riemann integrability	From TextBook		
Week 13	Chapter 7: Combinations of Riemann integrable functions	From TextBook		
Week 14	Chapter 7: Fundamental theorem of calculus, mean theorem for integration	From TextBook		
Week 15	Chapter 7: Taylor?s theorem, the integral as a limit.	From TextBook		
Week 16	Final Exam Week			

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
An ability to prove basic results on limits of functions and be able to apply them. [1SLO1(K1S1)] [1L7K1, 1L7S1]	20%	
An ability to prove basic results on continuity of functions and understand their applications. [1SLO1(K1S1)] [1L7K1, 1L7S1]	20%	
An ability to prove basic results on differentiability of functions and apply them to various problems. [1SLO1(K1S1)] [1L7K1, 1L7S1]	30%	
An ability to prove basic results on Riemann integration and their applications to approximation and numerical integration. [1SLO1(K1S1)] [1L7K1, 1L7S1]	30%	

Relationship to Program Student Outcomes (Out of 100%)					
SLO1(K1S1)	SLO2(S23C1)	SLO3(C24)	SLO4(C3)	SLO5(C4)	SLO6(S2C3)
100					

Relationship to NQF Outcomes (Out of 100%)			
L7K1 L7S1			
50	50		

Evaluation		
Assessment Tool	Weight	
First Exam	30%	
Second Exam	30%	
Final Exam	40%	

Date Printed: 2024-03-10