

Jordan University of Science and Technology Faculty of Science & Arts Mathematics Department

MATH308 Complex Analysis

Second Semester 2022-2023

Course Catalog

3 Credit Hours. This course will introduce and investigate the concept of complex numbers and complex functions. First, we present the properties of complex numbers and then learn the concept of limits, continuity, and differentiation for complex functions. Then we shall carefully understand the meaning of "Analytic functions" Finally, we shall discuss the integration of complex functions and the techniques to evaluate improper integration in the complex field.

Text Book			
Title	Complex Variables with Applications		
Author(s)	J. Brown and R. Churchill		
Edition	7th Edition		
Short Name	TextBook		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref 1	Fundamentals of Complex Analysis	E. B. Saff and A. D. Snider	3rd Edition	

Instructor			
Name	Dr. Mohammad Al Dolat		
Office Location	PH2 LEVEL 0		
Office Hours	Sun : 09:30 - 10:30 Sun : 13:30 - 14:30 Mon : 08:30 - 09:15 Mon : 14:30 - 15:30 Tue : 11:30 - 12:30 Wed : 14:30 - 15:30 Thu : 15:30 - 16:30		
Email	mmaldolat@just.edu.jo		

Class Schedule & Room

Section 1: Lecture Time: Mon, Wed : 13:00 - 14:30 Room: NG56

Prerequisites			
Line Number	Course Name	Prerequisite Type	
902010	MATH201 Intermediate Analysis	Prerequisite / Pass	
902450	MATH245 Set Theory And Logic	Prerequisite / Pass	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Complex numbers: Sums and products, Algebraic properties, Moduli and conjugates, Triangle inequalities	Sections: 1, 2, 3, 4 From TextBook	
Week 2	Polar coordinates and Euler's formula. Product and quotient in exponential form. Roots of complex numbers. Region in complex plane.	Sections: 5, 6, 7, 8 From TextBook	
Week 3	Functions of complex variables. Mappings. Limits. Theorems of limits.	Sections: 9, 10, 11, 12 From TextBook	
Week 4	Limits involving the point at infinity. Continuity. Derivative. Differentiation formulas.	Sections: 13, 14, 15, 16 From TextBook	
Week 5	Cauchy-Riemann equations. Sufficient condition for Differentiability. Polar coordinates.	Sections: 17, 18, 19 From TextBook	
Week 6	Analytic functions. Reflection Principle. Harmonic functions	Sections: 20, 21, 22 From TextBook	
Week 7	Exponential functions. Trigonometric functions. Hyperbolic functions. The logarithmic function and its branches	Sections: 23, 24, 25, 26 From TextBook	
Weeks 8, 9	Some identities involving logarithms. Complex exponent. Inverse trigonometric and hyperbolic functions.	Sections: 27, 28, 29 From TextBook	
Week 10	Complex valued functions w(t). Contours. Contour integrals and examples	Sections: 30, 31, 32 From TextBook	
Week 11	Antiderivatives. Cauchy-Goursat theorem. Simply and multiply connected domains	Sections: 34, 35, 36, 38 From TextBook	
Week 12	Cauchy integral formulas, Derivative of analytic functions. Liouville's theorem and fundamental theorem of algebra. Maximum moduli functions.	Sections: 39, 40, 41, 42 From TextBook	
Week 13	Convergence of sequence and series. Taylor series and examples. Laurent series.	Sections: 43, 44, 45, 46 From TextBook	
Week 14	Residues. Residues theorem. The three types of isolated singular points.	Sections: 53, 54, 55 From TextBook	

Week 15

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Ability to compute Sums, products, Moduli, and conjugates of complex numbers. [1SLO1]	20%	
To know Functions of complex variables, determine the differentiability of complex functions, and use Cauchy-Riemann equations to test the differentiability. [1SLO1]	30%	
To understand the concept of Harmonic functions. [1SLO1]	20%	
The Ability to use Residues theorem to compute some integrals. [1SLO1]	30%	

Relationship to Program Student Outcomes (Out of 100%)					
SLO1	SLO2	SLO3	SLO4	SLO5	SLO6
100					

Evaluation		
Assessment Tool	Weight	
first exam	30%	
second exam	30%	
final exam	40%	

Date Printed: 2023-03-16