

Jordan University of Science and Technology Faculty of Science & Arts Mathematics Department

MATH340 Linear Algebra (1)

First Semester 2022-2023

Course Catalog

3 Credit Hours. In this course, we mainly study the following subjects: Inner Products Space, Gram-Schmidt Process, QR-Decomposition, Eigenvalues and Eigenvectors, Orthogonal Diagonalization, General Linear Transformation, Similarity, Complex Inner Spaces, Unitary, Normal, and Hermitian Matrices.

Text Book			
Title	Elementary Linear Algebra		
Author(s)	H. Anton and C. Rorres		
Edition	9th Edition		
Short Name	TextBook		
Other Information	2007. John Wiley & Sons Inc.		

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref 1	Applied Linear Algebra	B. Noble and J.W. Daniel	3rd Edition	1998, Prentice Hall.
Ref 2	Linear Algebra with applications	G.Nakos and D. Joyner	1st Edition	1998, Brooks/Cole.

Instructor		
Name	Dr. IMAD JARADAT	
Office Location	D1 Level 0	
Office Hours	Sun : 10:30 - 11:30 Mon : 13:00 - 14:00 Tue : 10:30 - 11:30 Wed : 11:30 - 13:30 Thu : 10:30 - 11:30	
Email	iajaradat@just.edu.jo	

Class Schedule & Room

Section 1: Lecture Time: Mon : 11:30 - 13:00 Room: SF07

Prerequisites			
Line Number Course Name		Prerequisite Type	
902450	MATH245 Set Theory And Logic	Prerequisite / Pass	
901400	MATH140 Elements Of Linear Algebra	Prerequisite / Pass	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Weeks 1, 2, 3, 4, 5	Inner Products, Angle and Orthogonality, Orthonormal Bases, Best Approximations, Change of Basis, Orthogonal Matrices	Sections 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 From TextBook	
Weeks 6, 7	Eigenvalues and Eigenvectors, Diagonalization, Orthogonal Diagonalization	Sections 7.1, 7.2, 7.3 From TextBook	
Weeks 8, 9, 10	General Linear Transformation, Kernel and Range, Inverse Linear Transformation, Matrices of General Linear Transformation, Similarity, Isomorphism	Sections 8.1, 8.2, 8.3, 8.4, 8.5, 8.6 From TextBook	
Weeks 11, 12	Quadratic Forms, LU-Decomposition	Sections 9.5, 9.9 From TextBook	
Weeks 13, 14, 15	Complex Vector Spaces, Complex Inner Product Spaces, Unitary, Normal, and Hermitian Matrices	Sections 10.4, 10.5, 10.6 From TextBook	
Week 16	Final Exam Week		

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Extend the concept of Euclidean inner product over real and complex fields to a generalized inner product. [1SLO1]	30%	
Learn and apply the Gram-Schmidt process for producing orthonormal bases. [1SLO1]	12%	
Define and study linear transformations between arbitrary vector spaces and their properties. [1SLO1]	30%	
Learn and apply the algorithm for obtaining the LU-decomposition and QR- decomposition of a matrix. [1SLO1]	12%	
Define and study the unitary, normal, and Hermitian matrices. [1SLO1]	16%	

Relationship to Program Student Outcomes (Out of 100%)					
SLO1	SLO2	SLO3	SLO4	SLO5	SLO6
100					

Evaluation		
Assessment Tool	Weight	
First Exam	30%	
Second Exam	30%	
Final Exam	40%	

Date Printed: 2022-11-11