

Jordan University of Science and Technology Faculty of Science & Arts Mathematics Department

MATH350 Mathematical Models

Second Semester 2022-2023

Course Catalog

3 Credit Hours. Steps for mathematical modeling, population growth/logistic/harvesting, Modeling using first order systems of differential (and difference) equations. Dimensional analysis and Pi-theorem. Use dimensional analysis to treat some physical models. Use perturbation techniques to solve some physical (mass spring) models.

Text Book			
Title	Modeling with ordinary differential equation		
Author(s)	T.P. Dreyer.		
Edition	1st Edition		
Short Name	Text Book		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref 1	Modeling Life: The Mathematics of Biological Systems	Alan Garfinkel, Jane Shevtsov and Yina Guo.	1st Edition	

Instructor		
Name	Prof. Kamel Al-Khaled	
Office Location	PH2, level 1, Ext. 23454	
Office Hours	Sun : 09:00 - 11:00 Mon : 09:00 - 10:30 Tue : 09:00 - 11:00 Wed : 11:00 - 12:00 Thu : 11:00 - 12:00	
Email	kamel@just.edu.jo	

Class Schedule & Room

Section 1: Lecture Time: Mon : 14:30 - 16:00 Room: NG56

Prerequisites			
Line Number	Course Name	Prerequisite Type	
902520	MATH252 Mathematical Methods 1	Prerequisite / Pass	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Overview of mathematical modeling procedures.	From Text Book	
Weeks 2, 3	Population growth and logistic models. Harvesting	From Text Book	
Weeks 4, 5	Harvesting (Construction and analysis). Newton's Law for. Cooling, Mass-spring system (Derivation and validations).	From Text Book	
Week 6	Modeling using systems of first order differential equations: Salmon, Segregation	From Text Book	
Week 7	Modeling using systems of first order differential equations: William and Zelda and projectile trajectories	From Text Book	
Weeks 8, 9	Modeling using Difference equations with some examples like, Car rentals, US Elections model	From Text Book	
Week 10	Dimensional analysis and Pi-theorem	From Text Book	
Week 11	Dimensional analysis and Pi-theorem-2	From Text Book	
Week 12	Use dimensional analysis to treat some physical models	From Text Book	
Week 13	Perturbation techniques	From Text Book	
Weeks 14, 15	Use perturbation techniques to solve some physical (mass spring) models		

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Build a mathematical model that represents a real life problem [1SLO1]	50%	Final exam, First Exam, Project, Second Exam

the ability to solve certain type of mathematical models [1SLO2]	40%	Final exam, First Exam, Project, Second Exam
Interpretations of the results [1SLO6]	10%	Final exam, Project

Relationship to Program Student Outcomes (Out of 100%)					
SLO1	SLO2	SLO3	SLO4	SLO5	SLO6
50	40				10

Evaluation		
Assessment Tool	Weight	
Final exam	40%	
First Exam	25%	
Project	10%	
Second Exam	25%	

Date Printed: 2023-06-14