

Jordan University of Science and Technology Faculty of Science & Arts Mathematics Department

MATH470 Probabilistic Models In Operations Research - JNQF Level: 7

First Semester 2024-2025

Course Catalog

3 Credit Hours. This course is the second part of a series of operations research courses. The first part was about deterministic models in operations research. Topics of this course include Markov Chains, Queuing models including exponential models, Simulating real life problems that involve stochastic behavior.

Teaching Method: On Campus

Text Book			
Title	Operations Research Applications and Algorithms		
Author(s)	Winston W. L.		
Edition	4th Edition		
Short Name	TextBook		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref 1	Operations Research an Introduction	Taha H. A.	8th Edition	
Ref 2	Introduction to Stochastic Processes	Hoel P. G., S. C. Port, and C. J. Stone	1st Edition	
Ref 3	Introduction to Stochastic Models in Operations Research	3. Hillier F. S. and G. J. Lieberman	1st Edition	

Instructor			
Name	Prof. Mahmoud Alrefaei		
Office Location	D1 Level 0		

Office Hours	
Email	alrefaei@just.edu.jo

Class Schedule & Room

Section 1:	
Lecture Time: Mon, Wed : 10:00 - 11:30	
Room: NF45	

Prerequisites					
Line Number	Course Name	Prerequisite Type			
902301	MATH230 Probability Theory	Prerequisite / Pass			

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Introduction, Stochastic Processes, Markov Chains, examples	From TextBook	
Week 2	n-step transition probabilities, classification of states in a Markov chain	From TextBook	
Week 3	Steady-state probability and mean first passage times	From TextBook	
Week 4	Absorbing chains	From TextBook	
Week 5	Queuing Theory: Some queuing terminology, Modeling arrival and service processes	From TextBook	
Week 6	Poisson Processes Birth-Death processes The M/M/1 queuing systems	From TextBook	
Week 7	The M/M/1/c queuing systems	From TextBook	
Week 8	The M/M/s queuing systems	From TextBook	
Week 9	Finite source models: The machine repair model	From TextBook	
Weeks 9, 10	Exponential queues in series and open queuing network	From TextBook	
Week 11	Discrete event simulation, Random numbers generations	From TextBook	
Week 12	Random numbers generations	From TextBook	
Week 13	Monte Carlo simulation, Simulation with continuous random variables	From TextBook	
Week 14	Simulating a single server queuing system	From TextBook	
Week 15	Review	From TextBook	

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Be able to formulate Markov chain problems, analyze their properties and find and interpret their steady-state behavior. [1SLO1(K1S1)] [1L7K1]	25%	

Be able to formulate exponential queuing models and analyze their asymptotic behavior. [1SLO2(S23C1)] [1L7S3]	40%	
Be able to simulate systems that behave stochastically and conduct some applications of simulation. [1SLO3(C24)] [1L7C2]	15%	
An ability to work on teams to study real-life problems involving uncertainty and model them as Markov chains or queuing models, establish goals, collect data and interpret them. [1SLO6(S2C3)] [1L7S2]	10%	
Build Markov chain and the Queuing models, analyze them, draw conclusions and present them in front of range of audience. [1SLO4(C3)] [1L7C3]	10%	

Relationship to Program Student Outcomes (Out of 100%)						
SLO1(K1S1) SLO2(S23C1) SLO3(C24) SLO4(C3) SLO5(C4) SLO6(S2C3)						
25 40 15 10 10						

Relationship to NQF Outcomes (Out of 100%)					
L7K1	L7S2	L7S3	L7C2	L7C3	
25	10	40	15	10	

Evaluation			
Assessment Tool	Weight		
First Exam	20%		
Second Exam	25%		
Final Exam	40%		
course work and Project	15%		

Policy	
Attendance	Course attendance is a most, students who absent more than 20% of the classes equivalent to 7 classes (with or without excuse) will not be allowed to continue the course.
Cheating	Cheating is prohibited; and in case of cheating, the student will be subject to punishment according to the Standard JUST policy.
Exams	All exams are closed book and notes. The final exam is comprehensive (covers all the material). Incomplete exams need approval from the department head or the dean of the faculty.
Withdraw	The deadline for theoretical courses withdrawal (without reimbursement of tuition fees) is 10/1/2025. Students who are prohibited because they exceed the absentee limit can withdraw before this time also.
Communications	Student can communicate through JUST email or e-learning system, any other personal emails or social media communication are not allowed.

Date Printed: 2024-10-05