

Jordan University of Science and Technology Faculty of Science & Arts Chemistry Department

CHEM321 Inorganic Chemistry (2) - JNQF Level: 7

First Semester 2023-2024

Course Catalog

3 Credit Hours. This course is designed to strengthen and broaden knowledge of inorganic compounds and chemical bonding encountered in introductory college chemistry courses. Topics covered include molecular structure, symmetry, inorganic stereochemistry and reactions mechanisms. It will introduce students to the field of point groups and their applications. Also, an introduction to transition metal coordination compounds and their reactions. The course will be frequently illustrated will examples linked to other scientific disciplines.

Teaching Method: On Campus

	Text Book		
Title	Inorganic Chemistry		
Author(s)	Weller, Overton, Rourke, Armstrong		
Edition	7th Edition		
Short Name	Text Book		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Reference	Inorganic Chemistry	Housecroft and Sharpe	4th Edition	

	Instructor
Name	Prof. Ahmed Hijazi
Office Location	N4 L0

Office Hours	Sun : 10:30 - 11:30
	Sun : 12:30 - 13:30
	Tue : 10:30 - 11:15
	Tue : 14:30 - 15:00
	Wed : 08:00 - 08:45
	Thu : 10:30 - 11:30
	Thu : 12:30 - 13:30
Email	akhijazi@just.edu.jo

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue, Thu : 11:30 - 12:30 Room: N1302

Prerequisites				
Line Number	Course Name	Prerequisite Type		
912220	CHEM222 Inorganic Chemistry (1)	Prerequisite / Pass		

	Tentative List of Topics Covered			
Weeks	Торіс	References		
Week 1	Revision: General introduction, shape of atomic orbitals, electronic configuration, atomic orbitals, and molecules.	Ch. 1 From Reference		
Week 2	Type of Ligands. Coordination compounds. Complex formation. Coordination numbers.	Ch. 19 From Reference		
Week 3	Coordination number, geometry. Colour of transition metal complexes as related to ground and excited states.	Ch. 19 From Reference		
Week 4	Valence bond theory, hybridization and geometry of complexes. Nomenclature.	Ch. 20 From Reference		
Week 5	Isomerism: Ionization isomers, hydration isomers, coordination isomers, linkage isomers, diastereoisomers, enantiomers.	Ch. 19 From Reference		
Week 6	Reactivity and mechanisms.	Ch. 26 From Reference		
Week 7	Transition metals coordination compounds: Crystal field theory, molecular orbital approach.	Ch. 20 From Reference		
Week 8	Magnetic properties, electronic absorptions.	Ch. 20 From Reference		
Weeks 9, 10	Symmetry and point groups.	Ch. 3 From Reference		
Weeks 11, 12	Ligand field theory: ligand field splitting. Russell Saunders term symbols. Spin-Orbit coupling and spin multiplicity	Ch. 20 From Reference		

Weeks 13, 14	Elements of the first transition series: General remarks, oxidation states, binary compounds: oxides and halides. Compounds.	Ch. 21 From Reference
Week 15	Applications of transition metal coordination compounds.	Ch. 25 From Reference

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Have an understanding and analyzing of coordinated inorganic chemical compounds. [1a, 1b, 1e] [1L7K1, 1L7S1]	25%	exam1, exam2
Have an understanding of the reactivity and different mechanisms to examine coordinated compounds. [1e, 1i] [1L7K1, 1L7S1, 1L7S2]	15%	exam2, final
Understand symmetry operations and elements in order to investigate the point groups of different molecules and compounds. [1a, 1e] [1L7K1, 1L7C1]	10%	final
Understand the electronic, vibrational, and magnetic properties of transition metal complexes. [1a, 1b, 1k] [1L7K1]	30%	exam1, exam2, final
Demonstrate the properties of the transition metals and the reactions they undergo to create compounds and their applications. [1e, 1i] [1L7S1, 1L7S3, 1L7C2]	20%	final

	Relat	tionshij	p to Pro	ogram Student C	utcon	nes (Ou	t of 100	%)		
а	b	с	d	е	f	g	h	i	j	k
23.33	18.33			30.83				17.5		10

	Rela	ationship to NQF C	Outcomes (Out of 10	00%)	
L7K1	L7S1	L7S2	L7S3	L7C1	L7C2
52.5	24.17	5	6.67	5	6.67

Evaluation	
Assessment Tool	Weight
exam1	30%
exam2	30%
final	40%

	Policy
Make-Up Exams	? Make-up exams will be offered for valid reasons only with consent of the Dean. Make-up exams may be different from regular exams in content and format.
? Attendance Policy	Lecture attendance is mandatory. Student is allowed maximally 20% absentia of the total module hours. More than this percentage, student with an excuse will be drawn from the module. Otherwise, student will be deprived from the module with zero mark assigned.

Date Printed: 2024-02-26