

Jordan University of Science and Technology Faculty of Science & Arts Physics Department

PHY251 Modern Physics - JNQF Level: 7

Second Semester 2023-2024

Course Catalog

3 Credit Hours. Special relativity, structure of matter: Atomic structure: models of the atom. Quantum theory of radiation: Planck?s radiation law, Compton effect. Wave nature of matter: X-ray diffraction, particle diffraction, DeBroglie postulate. Introduction to quantum mechanics: Schrodinger equation, some applications.

Teaching Method: Blended

Text Book			
Title	Concepts of Modern Physics		
Author(s)	Arhur Beiser		
Edition	6th Edition		
Short Name	1		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Ref. 1	Modern Physics for Scientists and Engineers	John Morrison	2nd Edition	
Ref. 2	Concepts of Modern Physics	Sachs Mendel	3rd Edition	

Instructor		
Name	Dr. Noura AlZoubi	
Office Location	-	
Office Hours	Sun : 11:30 - 13:00 Mon : 13:00 - 14:00 Tue : 11:30 - 13:00 Wed : 13:00 - 14:00 Thu : 11:30 - 12:30	

Email

Class Schedule & Room

Section 1:

Lecture Time: Sun, Tue : 10:30 - 11:30 Room: M1304

Prerequisites			
Line Number Course Name Prerequisite Type			
922010	PHY201 Mathematical Physics(1)	Pre./Con.	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	1.1 Special Relativity, 1.2 Time dilation	Chapter 1 From 1	
Week 2	1.3 Doppler Effect, 1.4 Length Contraction, 1.5 Twin Paradox,	Chapter 1 From 1	
Week 3	1.6 Electricity and Magnetism, 1.7 Relativistic Momentum, 1.8 Mass and Energy	Chapter 1 From 1	
Week 4	1.9 Energy and Momentum, 1.10 General Relativity	Chapter 1 From 1	
Week 5	2.1 Electromagnetic Waves, 2.2 Black Body Radiation, 2.3 Photoelectric Effect	Chapter 2 From 1	
Week 6	2.4 What Is Light, 2.5 X-Rays, 2.6 X-Ray Diffraction	Chapter 2 From 1	
Week 7	2.7 Compton Effect, 2.8 Pair Production, 2.9 Photons and Gravity	Chapter 2 From 1	
Week 8	3.1 De Broglie Waves, 3.2 Waves of What?, 3.3 Describing a wave, 3.4 Phase and Group Velocity, 3.5 Particle Diffraction	Chapter 3 From 1	
Week 9	3.6 Particle in a Box, 3.7 Uncertainty Principle I, 3.8 Uncertainty Principle II, 3.9 Applying the Uncertainty Principle	Chapter 3 From 1	
Week 10	4.1 The Nuclear Atom, 4.2 Electron Orbits, 4.3 Atomic Spectra	Chapter 4 From 1	
Week 11	4.4 The Bohr Atom, 4.5 Energy Levels and Spectra, 4.6 Correspondence Principle.	Chapter 4 From 1	
Week 12	4.7 Nuclear Motion, 4.8 Atomic Excitation, 4.9 The Laser.	Chapter 4 From 1	
Week 13	5.1 Quantum Mechanics, 5.2 The Wave Equation, 5.3 Schrodinger Equation: Time-Dependent Form	Chapter 5 From 1	

Week 14	5.4 Linearity and Superposition, 5.5 Expectation Values, 5.6 Operators	Chapter 5 From 1
Week 15	5.7 Schrodinger Equation: Steady-State Form, 5.8 Particle in a Box, 5.9 Finite Potential Well.	Chapter 5 From 1
Week 16	5.10 Tunnel Effect, 5.11 Harmonic Oscillator.	Chapter 5 From 1

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Ability to understand the principles of special relativity and the particle properties of the waves [3SLO1(K1S1)] [1L7K1, 1L7S1]	33%	
Ability to understand the wave properties of particles and atomic structure [3SLO1(K1S1)] [1L7K1, 1L7S1]	33%	
Introducing quantum mechanics and the quantum theory of H-like atoms [3SLO1(K1S1)] [1L7K1, 1L7S1]	34%	

Relationship to Program Student Outcomes (Out of 100%)					
SLO1(K1S1)	SLO2(S23C1)	SLO3(C24)	SLO4(C3)	SLO5(C4)	SLO6(S2C3)
100					

Relationship to NQF Outcomes (Out of 100%)				
L7K1 L7S1				
50	50			

Evaluation			
Assessment Tool	Weight		
1st	25%		
Final	40%		
Participation	10%		
2nd	25%		

Date Printed: 2024-03-14