

Jordan University of Science and Technology Faculty of Science & Arts Physics Department

PHY311 Classical Mechanics (1)

First Semester 2020-2021

Course Catalog

3 Credit Hours. Newton Mechanics. Motion in one, two, and three dimensions, Motion of a system of particles. Motion of rigid bodies. Moving coordinate systems, gravitation.

Text Book				
Title	Classical Dynamics of Particles and Systems			
Author(s)	Marion and Thornton			
Edition	5th Edition			
Short Name	Marion			
Other Information				

Course References

Short name Book name		Author(s)	Edition	Other Information
Symon	Mechanics	K. R. Symon	3rd Edition	
Fowles	Analytical Mechanics	G. R. Fowles and G. L. Cassiday	7th Edition	

Instructor			
Name	Dr. EMAD ALMAHMOUD		
Office Location	-		
Office Hours			
Email	eaalmahmoud@just.edu.jo		

Class Schedule & Room

Section 1: Lecture Time: Mon, Wed : 08:30 - 10:00 Room: منصة الكترونية

Prerequisites			
Line Number Course Name Prerequisite Type			
922810	PHY281 Vibrations And Waves	Prerequisite / Pass	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Coordinates transformation, Rotation of axes	From Marion , From Symon , From Fowles	
Week 2	Vector differentiation and integration	From Marion , From Symon , From Fowles	
Week 3	Newton laws of motion, Application of Newton 2nd law to physical problems including retarding forces.	From Marion , From Symon , From Fowles	
Week 4	Conservation theorems and energy method for solving problems.	From Marion , From Symon , From Fowles	
Week 5	Gravitational force, field and potential	From Marion , From Symon , From Fowles	

Week 5	Solving problems on calculating the potential of continuous objects.	From
		Marion,
		From
		Symon,
		From
		I Owles
Week 6	Central force problem: solution and applications	From
		Marion,
		From
		Symon,
		From
		Fowles
Week 7	Orbits and differential equation of the orbit	From
		Marion,
		From
		Symon,
		From
		Fowles
Week 8	The planetary motion: The Kepler problem	From
		Marion,
		From
		Symon,
		From
		Fowles
Week 9	Stability of circular orbits	From
		Marion,
		From
		Symon,
		From
		Fowles
Week	Solving problems	From
10		Marion,
		From
		Symon,
		From
		Fowles
Week	Dynamics of system of particles: the center of mass	From
11		Marion,
		From
		Symon,
		From
		Fowles
Week	Linear momentum and Angular momentum	From
12		Marion,
		From
		Symon,
		From
		Fowles

Week 13	Energy of a system	From Marion , From Symon , From Fowles
Week 14	Collisions	From Marion , From Symon , From Fowles
Week 15	Cross sections	From Marion , From Symon , From Fowles

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Setup rotation matrices and use Levi-Sivita symbol to prove some vector properties 2- Understand Newton?s laws of motion and apply the 2nd law to different physical problems. [31]	25%	
Employ conservation theorems in solving mechanical problems. Calculate the gravitational field and potential for different mass distributions. [31]	25%	
Solve the two body central force problem and prove Kepler laws of orbital motion. Find the center of mass of different objects of different geometries. [31]	25%	
Find the linear and angular momentum of a system of particles. Employ conservation of momentum to study collisions. Understand the concept of cross-section. [31]	25%	

Relationship to Program Student Outcomes (Out of 100%)					
1	2	3	4	5	6
100					

Evaluation			
Assessment Tool	Weight		
First Exam	15%		
Second Exam	35%		
Final Exam	40%		
Quizes	10%		

Date Printed: 2020-10-12