

Jordan University of Science and Technology Faculty of Science & Arts Physics Department

PHY312 Classical Mechanics (2)

Second Semester 2022-2023

Course Catalog

3 Credit Hours. Some methods in calculus of variations Hamilton?s principle ? Lagrange and Hamiltonian dynamics Motion in a noninertial reference frame Dynamics of rigid bodies Coupled oscillations

Text Book			
Title	Classical Dynamics of Particles and Systems		
Author(s)	Marion and Thornton		
Edition	4th Edition		
Short Name	Classical Physics		
Other Information			

Course References

Short name	Book name	Author(s)	Edition	Other Information
Mechanics	Mechanics	K. R. Symon	3rd Edition	
Analytical Mechanics	Analytical Mechanics	G. R. Flowers and G. L. Cassiday	5th Edition	

Instructor			
Name	Dr. EMAD ALMAHMOUD		
Office Location	-		
Office Hours	Sun : 11:30 - 12:30 Sun : 13:30 - 14:30 Mon : 09:00 - 10:00 Tue : 11:30 - 12:30 Tue : 13:30 - 14:30 Thu : 11:30 - 12:30		
Email	eaalmahmoud@just.edu.jo		

Class Schedule & Room

Section 1: Lecture Time: Mon, Wed : 10:00 - 11:30 Room: NF39

Prerequisites			
Line Number	Course Name	Prerequisite Type	
923110	PHY311 Classical Mechanics (1)	Prerequisite / Pass	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Week 1	Euler's Equation, The second form of Euler Equation	From Classical Physics	
Week 2	Functions with several dependent variables & Euler equations when auxiliary conditions are imposed	From Classical Physics	
Week 3	Hamilton's Principle, Generalized Coordinates	From Classical Physics	
Week 4	Lagrang's Equations of Motions in Generalized Coordinates	From Classical Physics	
Week 5	Lagrange's Equations with Undetermined Multipliers & Equivalence of Lagrange's and Newton's Equations	From Classical Physics	
Week 6	A Theorem Concerning the Kinetic Energy, Conservation Theorems Revisited	From Classical Physics	
Week 7	Canonical Equations of Motion- Hamiltonian Dynamics	From Classical Physics	
Week 8	Rotating Coordinates System	From Classical Physics	
Week 9	Centrifugal and Coriolis Forces, Motion relative to the Earth	From Classical Physics	
Week 10	Inertia Tensor and Angular Momentum	From Classical Physics	
Week 11	Principle Axes of Inertia, Moments of Inertia for Different Body Coordinates System	From Classical Physics	
Week 12	Further Properties of the Inertia Tensor, Eulerian Angles	From Classical Physics	
Week 13	Euler's Equations for a Rigid Body, Force Free Motion of a Symmetric Top	From Classical Physics	

Week 14	Stability of Rigid-Body Rotations	From Classical Physics
Week 15	Two Coupled Harmonic Oscillators, Weak Coupling	From Classical Physics

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
Describe and understand the motion of a single particle using Lagrange-Hamilton formalism. [31]	30%	
Describe and understand the motion of a system of particles using Lagrange-Hamilton formalism. [31]	30%	
Describe and understand the motion in non-inertial reference frame [31]	20%	
Understand and describe the dynamics of rigid bodies [31]	20%	

Relationship to Program Student Outcomes (Out of 100%)					
1	2	3	4	5	6
100					

Evaluation		
Assessment Tool	Weight	
MID Exam	50%	
Final Exam	50%	

Date Printed: 2023-06-15