

Jordan University of Science and Technology Faculty of Science & Arts Physics Department

PHY341 Radiation Physics

First Semester 2020-2021

Course Catalog

3 Credit Hours. It introduces to radioactive decay and the production of radiation using machines, radiation interaction with matter, radiation detection and measurements, and some dose calculation. Finally it ends with radiation protection.

Text Book				
Title	Atoms, Radiation, and Radiation Protection			
Author(s)	James E Turner			
Edition	3rd Edition			
Short Name	1			
Other Information				

Instructor			
Name	Dr. Adnan Jaradat		
Office Location	Ph.4 L0		
Office Hours			
Email	jaradat@just.edu.jo		

Class Schedule & Room

Section 1: Lecture Time: Sun, Tue : 14:30 - 16:00 Room: منصة الكترونية

Prerequisites			
Line Number	Course Name	Prerequisite Type	
922512	PHY251 Modern Physics	Prerequisite / Pass	

Tentative List of Topics Covered			
Weeks	Торіс	References	
Weeks 1, 2, 3	The Nucleus and Nuclear Radiation		
Weeks 4, 5, 6, 7	Radioactive Decay		
Weeks 8, 9	Interaction of Heavy Charged Particles with Matter		
Week 10	8 Interaction of Photons with Matter		
Weeks 11, 12	Neutrons, Fission		
Weeks 13, 14	Methods of Radiation Detection		
Weeks 15, 16	Radiation Dosimetry		

Mapping of Course Outcomes to Program Student Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
In this outcome the students should be able to understand the physical meaning of the radioactive decay and the reasons behind the decay also the types of radioactive decaying. [31]	35%	mid exam, Quiz, final
To improve the students knowledge in understanding of radiation interaction with matter. Why do radiation (either electromagnetic radiation or physical particles) interact with matter. In understanding the interaction of radiation with matter we can predict the behavior of radiation and to be ready for more safety. [31]	35%	mid exam, Quiz, final
Methods of Radiation Detection and Radiation Dosimetry. In this outcome the students should understand the the methods and apparatus used in detection and measuring the amount of radiations, also understanding the type of detectors used in detection. [31]	30%	final

Relationship to Program Student Outcomes (Out of 100%)					
1	2	3	4	5	6
100					

Evaluation		
Assessment Tool	Weight	
mid exam	36%	
Quiz	14%	
final	50%	