Vehicular Ad-Hoc Networks (VANETs) is a branch of Ad-Hoc Networks that covers wide area and nodes are typically moving vehicles. The power level available in the vehicles is relatively higher than the power level available in other types of ad hoc networks. The reliability is an important issue in VANETs that is determined by specifying a mobility model and routing protocol. A key concern in designing reliable routing protocols is the network size assumption. Most protocols assume prior knowledge of the network size; however, this assumption requires a careful consideration and needs to be further investigated. Moreover, the neighborhood relationship between nodes is not well defined and estimated. The moving pattern for users is a critical factor in defining this relation. In this Paper, we investigate the influence of mobility models on the network size and neighborhood relationship, and then propose heuristic and distributed algorithm to define the nodes' neighbors and to estimate the network size. The performance of the proposed algorithm is evaluated using simulation.